Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains the experimental data and a complete executable transcript (vignette) of the statistical analysis presented in the paper "Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages" by Y. Ohnishi, W. Huber, A. Tsumura, M. Kang, P. Xenopoulos, K. Kurimoto, A. K. Oles, M. J. Arauzo-Bravo, M. Saitou, A.-K. Hadjantonakis and T. Hiiragi; Nature Cell Biology (2014) 16(1): 27-37. doi: 10.1038/ncb2881.".
This package provides a package containing an environment representing the HG_U95D.CDF file.
This package provides a package containing an environment representing the HT_Rat230_PM.cdf file.
Provide functions for retrieving, exploratory analyzing and visualizing the Human Protein Atlas data. HPAanalyze is designed to fullfill 3 main tasks: (1) Import, subsetting and export downloadable datasets; (2) Visualization of downloadable datasets for exploratory analysis; and (3) Working with the individual XML files. This package aims to serve researchers with little programming experience, but also allow power users to use the imported data as desired.
Affymetrix hugene11 annotation data (chip hugene11stprobeset) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was HT\_MG-430\_PM\_probe\_tab.
Implementation of the Interval-Wise Testing (IWT) for omics data. This inferential procedure tests for differences in "Omics" data between two groups of genomic regions (or between a group of genomic regions and a reference center of symmetry), and does not require fixing location and scale at the outset.
Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) is a statistical framework to uncover hidden sources of variation even when these sources are correlated. IA-SVA provides a flexible methodology to i) identify a hidden factor for unwanted heterogeneity while adjusting for all known factors; ii) test the significance of the putative hidden factor for explaining the unmodeled variation in the data; and iii), if significant, use the estimated factor as an additional known factor in the next iteration to uncover further hidden factors.
In gene therapy, stem cells are modified using viral vectors to deliver the therapeutic transgene and replace functional properties since the genetic modification is stable and inherited in all cell progeny. The retrieval and mapping of the sequences flanking the virus-host DNA junctions allows the identification of insertion sites (IS), essential for monitoring the evolution of genetically modified cells in vivo. A comprehensive toolkit for the analysis of IS is required to foster clonal trackign studies and supporting the assessment of safety and long term efficacy in vivo. This package is aimed at (1) supporting automation of IS workflow, (2) performing base and advance analysis for IS tracking (clonal abundance, clonal expansions and statistics for insertional mutagenesis, etc.), (3) providing basic biology insights of transduced stem cells in vivo.
Implement in an efficient approach to display the genomic data, relationship, information in an interactive circular genome(Circos) plot. interacCircos are inspired by circosJS', BioCircos.js and NG-Circos and we integrate the modules of circosJS', BioCircos.js and NG-Circos into this R package, based on htmlwidgets framework.
iSEEu (the iSEE universe) contains diverse functionality to extend the usage of the iSEE package, including additional classes for the panels, or modes allowing easy configuration of iSEE applications.
iSEEtree is an extension of iSEE for the TreeSummarizedExperiment data container. It provides interactive panel designs to explore hierarchical datasets, such as the microbiome and cell lines.
ILoReg is a tool for identification of cell populations from scRNA-seq data. In particular, ILoReg is useful for finding cell populations with subtle transcriptomic differences. The method utilizes a self-supervised learning method, called Iteratitive Clustering Projection (ICP), to find cluster probabilities, which are used in noise reduction prior to PCA and the subsequent hierarchical clustering and t-SNE steps. Additionally, functions for differential expression analysis to find gene markers for the populations and gene expression visualization are provided.
This software is meant to be used for classification of images of cell-based assays for neuronal surface autoantibody detection or similar techniques. It takes imaging files as input and creates a composite score from these, that for example can be used to classify samples as negative or positive for a certain antibody-specificity. The reason for its name is that I during its creation have thought about the individual picture as an archielago where we with different filters control the water level as well as ground characteristica, thereby finding islands of interest.
Illumina HumanWG6v1 annotation data (chip illuminaHumanv1) assembled using data from public repositories.
IsoBayes is a Bayesian method to perform inference on single protein isoforms. Our approach infers the presence/absence of protein isoforms, and also estimates their abundance; additionally, it provides a measure of the uncertainty of these estimates, via: i) the posterior probability that a protein isoform is present in the sample; ii) a posterior credible interval of its abundance. IsoBayes inputs liquid cromatography mass spectrometry (MS) data, and can work with both PSM counts, and intensities. When available, trascript isoform abundances (i.e., TPMs) are also incorporated: TPMs are used to formulate an informative prior for the respective protein isoform relative abundance. We further identify isoforms where the relative abundance of proteins and transcripts significantly differ. We use a two-layer latent variable approach to model two sources of uncertainty typical of MS data: i) peptides may be erroneously detected (even when absent); ii) many peptides are compatible with multiple protein isoforms. In the first layer, we sample the presence/absence of each peptide based on its estimated probability of being mistakenly detected, also known as PEP (i.e., posterior error probability). In the second layer, for peptides that were estimated as being present, we allocate their abundance across the protein isoforms they map to. These two steps allow us to recover the presence and abundance of each protein isoform.
Illumina HumanWG6v2 annotation data (chip illuminaHumanv2) assembled using data from public repositories.
Illumina HumanHT12v4 annotation data (chip illuminaHumanv4) assembled using data from public repositories.
Plots protein properties and visualizes position of peptide immunogens within protein sequence. Allows evaluation of immunogens based on structural and functional annotations to infer suitability for antibody-based methods aiming to detect native proteins.
This package provides an interface to any collection of data sets within a single iSEE web-application. The main functionality of this package is to define a custom landing page allowing app maintainers to list a custom collection of data sets that users can selected from and directly load objects into an iSEE web-application.
An R package for integrated differential expression and differential network analysis based on omic data for cancer biomarker discovery. Both correlation and partial correlation can be used to generate differential network to aid the traditional differential expression analysis to identify changes between biomolecules on both their expression and pairwise association levels. A detailed description of the methodology has been published in Methods journal (PMID: 27592383). An interactive visualization feature allows for the exploration and selection of candidate biomarkers.
Define a SummarizedExperiment and exploratory app for Ivy-GAP glioblastoma image, expression, and clinical data.
IsoCorrectoRGUI is a Graphical User Interface for the IsoCorrectoR package. IsoCorrectoR performs the correction of mass spectrometry data from stable isotope labeling/tracing metabolomics experiments with regard to natural isotope abundance and tracer impurity. Data from both MS and MS/MS measurements can be corrected (with any tracer isotope: 13C, 15N, 18O...), as well as high resolution MS data from multiple-tracer experiments (e.g. 13C and 15N used simultaneously).
The iterative Bayesian Model Averaging (BMA) algorithm for survival analysis is a variable selection method for applying survival analysis to microarray data.