Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analyzes and models data subject to sampling biases. Provides functions to estimate the density and cumulative distribution functions from biased samples of continuous distributions. Includes the estimators proposed by Bhattacharyya et al. (1988) <doi:10.1080/03610928808829825> and Jones (1991) <doi:10.2307/2337020> for density, and by Cox (2005, ISBN:052184939X) and Bose and Dutta (2022) <doi:10.1007/s00184-021-00824-3> for distribution, with different bandwidth selectors. Also includes a real length-biased dataset on shrub width from Muttlak (1988) <https://www.proquest.com/openview/3dd74592e623cdbcfa6176e85bd3d390/1?cbl=18750&diss=y&pq-origsite=gscholar>.
Datasets from the WallOmics project. Contains phenomics, metabolomics, proteomics and transcriptomics data collected from two organs of five ecotypes of the model plant Arabidopsis thaliana exposed to two temperature growth conditions. Exploratory and integrative analyses of these data are presented in Durufle et al (2020) <doi:10.1093/bib/bbaa166> and Durufle et al (2020) <doi:10.3390/cells9102249>.
Data from the United Nation's World Population Prospects 2008.
An API client for the Wikidata Query Service <https://query.wikidata.org/>.
This package provides functions to assist in the processing and exploration of data from environmental monitoring programs. The package name stands for "water quality" and reflects the original focus on time series data for physical and chemical properties of water, as well as the biota. Intended for programs that sample approximately monthly, quarterly or annually at discrete stations, a feature of many legacy data sets. Most of the functions should be useful for analysis of similar-frequency time series regardless of the subject matter.
This package provides a suite of routines for Weyl algebras. Notation follows Coutinho (1995, ISBN 0-521-55119-6, "A Primer of Algebraic D-Modules"). Uses disordR discipline (Hankin 2022 <doi:10.48550/arXiv.2210.03856>). To cite the package in publications, use Hankin 2022 <doi:10.48550/arXiv.2212.09230>.
This package provides a single function to fit data of an input data frame into one of the selected Weibull functions (w2, w3 and it's truncated versions), calculating the scale, location and shape parameters accordingly. The resulting plots and files are saved into the folder parameter provided by the user. References: a) John C. Nash, Ravi Varadhan (2011). "Unifying Optimization Algorithms to Aid Software System Users: optimx for R" <doi:10.18637/jss.v043.i09>.
An interface to WordNet using the Jawbone Java API to WordNet. WordNet (<https://wordnet.princeton.edu/>) is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. Please note that WordNet(R) is a registered tradename. Princeton University makes WordNet available to research and commercial users free of charge provided the terms of their license (<https://wordnet.princeton.edu/license-and-commercial-use>) are followed, and proper reference is made to the project using an appropriate citation (<https://wordnet.princeton.edu/citing-wordnet>). The WordNet database files need to be made available separately, either via package wordnetDicts from <https://datacube.wu.ac.at>, installing system packages where available, or direct download from <https://wordnetcode.princeton.edu/3.0/WNdb-3.0.tar.gz>.
This package provides functions aiming to facilitate the analysis of the structure of animal acoustic signals in R'. warbleR makes use of the basic sound analysis tools from the packages tuneR and seewave', and offers new tools for exploring and quantifying acoustic signal structure. The package allows to organize and manipulate multiple sound files, create spectrograms of complete recordings or individual signals in different formats, run several measures of acoustic structure, and characterize different structural levels in acoustic signals (Araya-Salas et al 2016 <doi:10.1111/2041-210X.12624>).
Tool-set of modules for creating web-based applications that use plot based strategies to visualize and analyze multi-omics data. This package utilizes the shiny and plotly frameworks to provide a user friendly dashboard for interactive plotting.
The Wordle game. Players have six attempts to guess a five-letter word. After each guess, the player is informed which letters in their guess are either: anywhere in the word; in the right position in the word. This can be used to inform the next guess. Can be played interactively in the console, or programmatically. Based on Josh Wardle's game <https://www.powerlanguage.co.uk/wordle/>.
This package provides efficient implementations of weighted dependence measures and related asymptotic tests for independence. Implemented measures are the Pearson correlation, Spearman's rho, Kendall's tau, Blomqvist's beta, and Hoeffding's D; see, e.g., Nelsen (2006) <doi:10.1007/0-387-28678-0> and Hollander et al. (2015, ISBN:9780470387375).
The web version WebGestalt <https://www.webgestalt.org> supports 12 organisms, 354 gene identifiers and 321,251 function categories. Users can upload the data and functional categories with their own gene identifiers. In addition to the Over-Representation Analysis, WebGestalt also supports Gene Set Enrichment Analysis and Network Topology Analysis. The user-friendly output report allows interactive and efficient exploration of enrichment results. The WebGestaltR package not only supports all above functions but also can be integrated into other pipeline or simultaneously analyze multiple gene lists.
This package implements detection for the number and locations of the change-points in a time series using the Wild Binary Segmentation and the Locally Stationary Wavelet model of Korkas and Fryzlewicz (2017) <doi:10.5705/ss.202015.0262>.
The wavelet-based variance transformation method is used for system modelling and prediction. It refines predictor spectral representation using Wavelet Theory, which leads to improved model specifications and prediction accuracy. Details of methodologies used in the package can be found in Jiang, Z., Sharma, A., & Johnson, F. (2020) <doi:10.1029/2019WR026962>, Jiang, Z., Rashid, M. M., Johnson, F., & Sharma, A. (2020) <doi:10.1016/j.envsoft.2020.104907>, and Jiang, Z., Sharma, A., & Johnson, F. (2021) <doi:10.1016/J.JHYDROL.2021.126816>.
Clusters state sequences and weighted data. It provides an optimized weighted PAM algorithm as well as functions for aggregating replicated cases, computing cluster quality measures for a range of clustering solutions, sequence analysis typology validation using parametric bootstraps and plotting (fuzzy) clusters of state sequences. It further provides a fuzzy and crisp CLARA algorithm to cluster large database with sequence analysis, and a methodological framework for Robustness Assessment of Regressions using Cluster Analysis Typologies (RARCAT).
New tools for the imputation of missing values in high-dimensional data are introduced using the non-parametric nearest neighbor methods. It includes weighted nearest neighbor imputation methods that use specific distances for selected variables. It includes an automatic procedure of cross validation and does not require prespecified values of the tuning parameters. It can be used to impute missing values in high-dimensional data when the sample size is smaller than the number of predictors. For more information see Faisal and Tutz (2017) <doi:10.1515/sagmb-2015-0098>.
The employment of the Wavelet decomposition technique proves to be highly advantageous in the modelling of noisy time series data. Wavelet decomposition technique using the "haar" algorithm has been incorporated to formulate a hybrid Wavelet KNN (K-Nearest Neighbour) model for time series forecasting, as proposed by Anjoy and Paul (2017) <DOI:10.1007/s00521-017-3289-9>.
Client for World Register of Marine Species (<https://www.marinespecies.org/>). Includes functions for each of the API methods, including searching for names by name, date and common names, searching using external identifiers, fetching synonyms, as well as fetching taxonomic children and taxonomic classification.
The shiny application Wallace is a modular platform for reproducible modeling of species niches and distributions. Wallace guides users through a complete analysis, from the acquisition of species occurrence and environmental data to visualizing model predictions on an interactive map, thus bundling complex workflows into a single, streamlined interface. An extensive vignette, which guides users through most package functionality can be found on the package's GitHub Pages website: <https://wallaceecomod.github.io/wallace/articles/tutorial-v2.html>.
This package provides a multi-visit clinical trial may collect participant responses on an ordinal scale and may utilize a stratified design, such as randomization within centers, to assess treatment efficacy across multiple visits. Baseline characteristics may be strongly associated with the outcome, and adjustment for them can improve power. The win ratio (ignores ties) and the win odds (accounts for ties) can be useful when analyzing these types of data from randomized controlled trials. This package provides straightforward functions for adjustment of the win ratio and win odds for stratification and baseline covariates, facilitating the comparison of test and control treatments in multi-visit clinical trials. For additional information concerning the methodologies and applied examples within this package, please refer to the following publications: 1. Weideman, A.M.K., Kowalewski, E.K., & Koch, G.G. (2024). â Randomization-based covariance adjustment of win ratios and win odds for randomized multi-visit studies with ordinal outcomes.â Journal of Statistical Research, 58(1), 33â 48. <doi:10.3329/jsr.v58i1.75411>. 2. Kowalewski, E.K., Weideman, A.M.K., & Koch, G.G. (2023). â SAS macro for randomization-based methods for covariance and stratified adjustment of win ratios and win odds for ordinal outcomes.â SESUG 2023 Proceedings, Paper 139-2023.
Makes research involving EMDAT and related datasets easier. These Datasets are manually filled and have several formatting and compatibility issues. Weed aims to resolve these with its functions.
This package provides efficient implementation of the Wild Binary Segmentation and Binary Segmentation algorithms for estimation of the number and locations of multiple change-points in the piecewise constant function plus Gaussian noise model.
This package performs Wilcoxon-Mann-Whitney test in the presence of missing data with controlled Type I error regardless of the values of missing data.