Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for the variance gamma distribution. Density, distribution and quantile functions. Functions for random number generation and fitting of the variance gamma to data. Also, functions for computing moments of the variance gamma distribution of any order about any location. In addition, there are functions for checking the validity of parameters and to interchange different sets of parameterizations for the variance gamma distribution.
This package performs analysis of various genetic parameters like genotypic and phenotypic coefficient of variance, heritability, genetic advance, genetic advance as a percentage of mean. The package also has functions for genotypic and phenotypic covariance, correlation and path analysis. Dataset has been added to facilitate example. For more information refer Singh, R.K. and Chaudhary, B.D. (1977, ISBN:81766330709788176633079).
This package provides users with a simple and convenient mechanism to manage and query a Virtuoso database using the DBI (Data-Base Interface) compatible ODBC (Open Database Connectivity) interface. Virtuoso is a high-performance "universal server," which can act as both a relational database, supporting standard Structured Query Language ('SQL') queries, while also supporting data following the Resource Description Framework ('RDF') model for Linked Data. RDF data can be queried using SPARQL ('SPARQL Protocol and RDF Query Language) queries, a graph-based query that supports semantic reasoning. This allows users to leverage the performance of local or remote Virtuoso servers using popular R packages such as DBI and dplyr', while also providing a high-performance solution for working with large RDF triplestores from R. The package also provides helper routines to install, launch, and manage a Virtuoso server locally on Mac', Windows and Linux platforms using the standard interactive installers from the R command-line. By automatically handling these setup steps, the package can make using Virtuoso considerably faster and easier for a most users to deploy in a local environment. Managing the bulk import of triples from common serializations with a single intuitive command is another key feature of this package. Bulk import performance can be tens to hundreds of times faster than the comparable imports using existing R tools, including rdflib and redland packages.
This package provides a suite of plots for displaying variable importance and two-way variable interaction jointly. Can also display partial dependence plots laid out in a pairs plot or zenplots style.
Built on graph theory and the high-performance data.table framework, this package provides a comprehensive suite of tools for tidying, pruning, and visualizing animal pedigrees. By modeling pedigrees as directed acyclic graphs using igraph', it ensures robust loop detection, efficient generation assignment, and sophisticated hierarchical layouts. Key features include standardizing pedigree formats, flexible ancestry tracing, and generating legible vector-based PDF graphs. A unique compaction algorithm enables the visualization of massive pedigrees (e.g., in aquaculture selective breeding population) by grouping full-sib families, maintaining structural clarity without overcrowding.
This package provides an interface to the VK API <https://vk.com/dev/methods>. VK <https://vk.com/> is the largest European online social networking service, based in Russia.
Collapsed Variational Inference for a Dirichlet Process (DP) mixture model with unknown covariance matrix structure and DP concentration parameter. It enables efficient clustering of high-dimensional data with significantly improved computational speed than traditional MCMC methods. The package incorporates 8 parameterisations and corresponding prior choices for the unknown covariance matrix, from which the user can choose and apply accordingly.
Uses a Bayesian model to estimate the variability in a repeated measure outcome and use that as an outcome or a predictor in a second stage model.
This package implements variable screening techniques for ultra-high dimensional regression settings. Techniques for independent (iid) data, varying-coefficient models, and longitudinal data are implemented. The package currently contains three screen functions: screenIID(), screenLD() and screenVCM(), and six methods for simulating dataset: simulateDCSIS(), simulateLD, simulateMVSIS(), simulateMVSISNY(), simulateSIRS() and simulateVCM(). The package is based on the work of Li-Ping ZHU, Lexin LI, Runze LI, and Li-Xing ZHU (2011) <DOI:10.1198/jasa.2011.tm10563>, Runze LI, Wei ZHONG, & Liping ZHU (2012) <DOI:10.1080/01621459.2012.695654>, Jingyuan LIU, Runze LI, & Rongling WU (2014) <DOI:10.1080/01621459.2013.850086> Hengjian CUI, Runze LI, & Wei ZHONG (2015) <DOI:10.1080/01621459.2014.920256>, and Wanghuan CHU, Runze LI and Matthew REIMHERR (2016) <DOI:10.1214/16-AOAS912>.
Interactive variogram diagnostics.
This package implements the Variable importance Explainable Elastic Shape Analysis pipeline for explainable machine learning with functional data inputs. Converts training and testing data functional inputs to elastic shape analysis principal components that account for vertical and/or horizontal variability. Computes feature importance to identify important principal components and visualizes variability captured by functional principal components. See Goode et al. (2025) <doi:10.48550/arXiv.2501.07602> for technical details about the methodology.
Non-Domestic VAERS vaccine data for 01/01/2016 - 06/14/2016. If you want to explore the full VAERS data for 1990 - Present (data, symptoms, and vaccines), then check out the vaersND package from the URL below. The URL and BugReports below correspond to the vaersND package, of which vaersNDvax is a small subset (2016 only). vaersND is not hosted on CRAN due to the large size of the data set. To install the Suggested vaers and vaersND packages, use the following R code: devtools::install_git("https://gitlab.com/iembry/vaers.git", build_vignettes = TRUE) and devtools::install_git("https://gitlab.com/iembry/vaersND.git", build_vignettes = TRUE)'. "VAERS is a national vaccine safety surveillance program co-sponsored by the US Centers for Disease Control and Prevention (CDC) and the US Food and Drug Administration (FDA). VAERS is a post-marketing safety surveillance program, collecting information about adverse events (possible side effects) that occur after the administration of vaccines licensed for use in the United States." For more information about the data, visit <https://vaers.hhs.gov/index>. For information about vaccination/immunization hazards, visit <http://www.questionuniverse.com/rethink.html/#vaccine>.
This package implements D-vine quantile regression models with parametric or nonparametric pair-copulas. See Kraus and Czado (2017) <doi:10.1016/j.csda.2016.12.009> and Schallhorn et al. (2017) <doi:10.48550/arXiv.1705.08310>.
This package provides easy-to-use tools for data analysis and visualization for hyperspectral remote sensing (also known as imaging spectroscopy), with a particular focus on vegetation hyperspectral data analysis. It consists of a set of functions, ranging from the organization of hyperspectral data in the proper data structure for spectral feature selection, calculation of vegetation index, multivariate analysis, as well as to the visualization of spectra and results of analysis in the ggplot2 style.
Generate suggestions for validation rules from a reference data set, which can be used as a starting point for domain specific rules to be checked with package validate'.
This package provides a collection of functions to make R a more effective viewscape analysis tool for calculating viewscape metrics based on computing the viewable area for given a point/multiple viewpoints and a digital elevation model.The method of calculating viewscape metrics implemented in this package are based on the work of Tabrizian et al. (2020) <doi:10.1016/j.landurbplan.2019.103704>. The algorithm of computing viewshed is based on the work of Franklin & Ray. (1994) <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=555780f6f5d7e537eb1edb28862c86d1519af2be>.
Generate Venn diagrams from two or three sets, displaying the overlapping items as lists in the appropriate sections. The lists can be split into columns or shortened for large sets and the plot is generated using ggplot2 allowing further customisations.
Traces information spread through interactions between features, utilising information theory measures and a higher-order generalisation of the concept of widest paths in graphs. In particular, vistla can be used to better understand the results of high-throughput biomedical experiments, by organising the effects of the investigated intervention in a tree-like hierarchy from direct to indirect ones, following the plausible information relay circuits. Due to its higher-order nature, vistla can handle multi-modality and assign multiple roles to a single feature.
Earth system dynamics, such as plant dynamics, water bodies, and fire regimes, are widely monitored using spectral indicators obtained from multispectral remote sensing products. There is a great need for spectral index catalogues and computing tools as a result of the quick rise of suggested spectral indices. Unfortunately, the majority of these resources lack a standard Application Programming Interface, are out-of-date, closed-source, or are not linked to a catalogue. We now introduce VegSpecIndex', a standardised list of spectral indices for studies of the earth system. A thorough inventory of spectral indices is offered by VegSpecIndex and is connected to an R library. For every spectral index, VegSpecIndex provides a comprehensive collection of information, such as names, formulae, and source references. The user community may add more items to the catalogue, which will keep VegSpecIndex up to date and allow for further scientific uses. Additionally, the R library makes it possible to apply the catalogue to actual data, which makes it easier to employ remote sensing resources effectively across a variety of Earth system domains.
This package provides tools to analyze vaccine coverage data and simulate potential disease outbreak scenarios. It allows users to calculate key epidemiological metrics such as the effective reproduction number (Re), outbreak probabilities, and expected infection counts based on county-level vaccination rates, disease characteristics, and vaccine effectiveness. The package includes historical kindergarten vaccination data for Florida counties and offers functions for generating summary tables, visualizations, and exporting the underlying plot data.
Interactive visualization for Bayesian prior and posterior distributions. This package facilitates an animated transition between prior and posterior distributions. Additionally, it splits the distribution into bars based on the provided breaks, displaying the probability for each region. If no breaks are provided, it defaults to zero.
This package provides a graphical R package designed to visualize behavioral observations over time. Based on raw time data extracted from video recorded sessions of experimental observations, ViSiElse grants a global overview of a process by combining the visualization of multiple actions timestamps for all participants in a single graph. Individuals and/or group behavior can easily be assessed. Supplementary features allow users to further inspect their data by adding summary statistics (mean, standard deviation, quantile or statistical test) and/or time constraints to assess the accuracy of the realized actions.
Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) <doi:10.1080/01621459.2023.2169701>.
This package provides a set of functions for manipulating data frames in accordance with specific business rules. In addition, it includes wrapper functions for commonly used functions from the popular tidyverse package, making it easy to integrate these functions into data analysis workflows. The package is designed to streamline data preprocessing and help users quickly and efficiently perform data transformations that are specific to their business needs.