Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows the user to generate a list of features (gene, pseudo, RNA, CDS, and/or UTR) directly from NCBI database for any species with a current build available. Option to save downloaded and formatted files is available, and the user can prioritize the feature list based on type and assembly builds present in the current build used. The user can then use the list of features generated or provide a list to map a set of markers (designed for SNP markers with a single base pair position available) to the closest feature based on the map build. This function does require map positions of the markers to be provided and the positions should be based on the build being queried through NCBI.
This package provides functions that fit two modern education-based value-added models. One of these models is the quantile value-added model. This model permits estimating a school's value-added based on specific quantiles of the post-test distribution. Estimating value-added based on quantiles of the post-test distribution provides a more complete picture of an education institution's contribution to learning for students of all abilities. See Page, G.L.; San Martà n, E.; Orellana, J.; Gonzalez, J. (2017) <doi:10.1111/rssa.12195> for more details. The second model is a temporally dependent value-added model. This model takes into account the temporal dependence that may exist in school performance between two cohorts in one of two ways. The first is by modeling school random effects with a non-stationary AR(1) process. The second is by modeling school effects based on previous cohort's post-test performance. In addition to more efficiently estimating value-added, this model permits making statements about the persistence of a schools effectiveness. The standard value-added model is also an option.
Includes functions for calculating basic indices of macrozoobenthos for water quality and is designed to provide researchers and environmental professionals with a comprehensive tool for evaluating the ecological health of aquatic ecosystems.The package is based on the following references: Paisley, M. F., Trigg, D. J. and Walley, W. J. (2014)<doi:10.1002/rra.2686>. Arslan, N., Salur, A., Kalyoncu, H. et al.(2016) <doi:10.1515/biolog-2016-0005>. Hilsenhoff W.L. (1987). Hilsenhoff. W.L. (1988) Barbour, M.T., Gerritsen, J., Snyder, B.D., and Stribling, J.B. (1999).
The MIMS-unit algorithm is developed to compute Monitor Independent Movement Summary Unit, a measurement to summarize raw accelerometer data while ensuring harmonized results across different devices. It also includes scripts to reproduce results in the related publication (John, D., Tang. Q., Albinali, F. and Intille, S. (2019) <doi:10.1123/jmpb.2018-0068>).
This repository aims to contribute to the econometric models production with Colombian data, by providing a set of web-scrapping functions of some of the main macro-financial indicators. All the sources are public and free, but the advantage of these functions is that they directly download and harmonize the information in R's environment. No need to import or download additional files. You only need an internet connection!
An implementation of the cross-validated difference in means (CVDM) test by Desmarais and Harden (2014) <doi:10.1007/s11135-013-9884-7> (see also Harden and Desmarais, 2011 <doi:10.1177/1532440011408929>) and the cross-validated median fit (CVMF) test by Desmarais and Harden (2012) <doi:10.1093/pan/mpr042>. These tests use leave-one-out cross-validated log-likelihoods to assist in selecting among model estimations. You can also utilize data from Golder (2010) <doi:10.1177/0010414009341714> and Joshi & Mason (2008) <doi:10.1177/0022343308096155> that are included to facilitate examples from real-world analysis.
This package provides a toolbox for modeling manifest and latent group differences and moderation effects in various statistical network models.
Estimation of interaction (i.e., moderation) effects between latent variables in structural equation models (SEM). The supported methods are: The constrained approach (Algina & Moulder, 2001). The unconstrained approach (Marsh et al., 2004). The residual centering approach (Little et al., 2006). The double centering approach (Lin et al., 2010). The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000). The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007) The constrained- unconstrained, residual- and double centering- approaches are estimated via lavaan (Rosseel, 2012), whilst the LMS- and QML- approaches are estimated via modsem it self. Alternatively model can be estimated via Mplus (Muthén & Muthén, 1998-2017). References: Algina, J., & Moulder, B. C. (2001). <doi:10.1207/S15328007SEM0801_3>. "A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3." Klein, A., & Moosbrugger, H. (2000). <doi:10.1007/BF02296338>. "Maximum likelihood estimation of latent interaction effects with the LMS method." Klein, A. G., & Muthén, B. O. (2007). <doi:10.1080/00273170701710205>. "Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects." Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). <doi:10.1080/10705511.2010.488999>. "Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies." Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). <doi:10.1207/s15328007sem1304_1>. "On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables." Marsh, H. W., Wen, Z., & Hau, K. T. (2004). <doi:10.1037/1082-989X.9.3.275>. "Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction." Muthén, L.K. and Muthén, B.O. (1998-2017). "'Mplus Userâ s Guide. Eighth Edition." <https://www.statmodel.com/>. Rosseel Y (2012). <doi:10.18637/jss.v048.i02>. "'lavaan': An R Package for Structural Equation Modeling.".
Maximum likelihood estimation for generalized linear mixed models via Monte Carlo EM. For a description of the algorithm see Brian S. Caffo, Wolfgang Jank and Galin L. Jones (2005) <DOI:10.1111/j.1467-9868.2005.00499.x>.
This package provides tools for econometric production analysis with the Symmetric Normalized Quadratic (SNQ) profit function, e.g. estimation, imposing convexity in prices, and calculating elasticities and shadow prices.
Uses memory-mapping to enable the random access of elements of a text file of characters separated by characters as if it were a simple R(cpp) matrix.
This package provides tools to simulate morphological traits along phylogenetic trees with branch lengths representing evolutionary distance or time. Includes functions for visualizing evolutionary processes along trees and within morphological character matrices.
Wrapper for minepy implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of minepy can be found at <http://minepy.readthedocs.io/en/latest>.
Test the marginal correlation between a scalar response variable with a vector of explanatory variables using the max-type test with bootstrap. The test is based on the max-type statistic and its asymptotic distribution under the null hypothesis of no marginal correlation. The bootstrap procedure is used to approximate the null distribution of the test statistic. The package provides a function for performing the test. For more technical details, refer to Zhang and Laber (2014) <doi:10.1080/01621459.2015.1106403>.
This package provides a suite of utility functions providing functionality commonly needed for production level projects such as logging, error handling, cache management and date-time parsing. Functions for date-time parsing and formatting require that time zones be specified explicitly, avoiding a common source of error when working with environmental time series.
Fit Cox proportional hazard models with a weighted partial likelihood. It handles one or multiple endpoints, additional matching and makes it possible to reuse controls for other endpoints Stoer NC and Samuelsen SO (2016) <doi:10.32614/rj-2016-030>.
Multivariate Information-based Inductive Causation, better known by its acronym MIIC, is a causal discovery method, based on information theory principles, which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The recent more interpretable MIIC extension (iMIIC) further distinguishes genuine causes from putative and latent causal effects, while scaling to very large datasets (hundreds of thousands of samples). Since the version 2.0, MIIC also includes a temporal mode (tMIIC) to learn temporal causal graphs from stationary time series data. MIIC has been applied to a wide range of biological and biomedical data, such as single cell gene expression data, genomic alterations in tumors, live-cell time-lapse imaging data (CausalXtract), as well as medical records of patients. MIIC brings unique insights based on causal interpretation and could be used in a broad range of other data science domains (technology, climatology, economy, ...). For more information, you can refer to: Simon et al., eLife 2024, <doi:10.1101/2024.02.06.579177>, Ribeiro-Dantas et al., iScience 2024, <doi:10.1016/j.isci.2024.109736>, Cabeli et al., NeurIPS 2021, <https://why21.causalai.net/papers/WHY21_24.pdf>, Cabeli et al., Comput. Biol. 2020, <doi:10.1371/journal.pcbi.1007866>, Li et al., NeurIPS 2019, <https://papers.nips.cc/paper/9573-constraint-based-causal-structure-learning-with-consistent-separating-sets>, Verny et al., PLoS Comput. Biol. 2017, <doi:10.1371/journal.pcbi.1005662>, Affeldt et al., UAI 2015, <https://auai.org/uai2015/proceedings/papers/293.pdf>. Changes from the previous 1.5.3 release on CRAN are available at <https://github.com/miicTeam/miic_R_package/blob/master/NEWS.md>.
This package implements the method of successive dichotomizations by Bradley and Massof (2018) <doi:10.1371/journal.pone.0206106>, which estimates item measures, person measures and ordered rating category thresholds given ordinal rating scale data.
Extension of the mgcv package, providing visual tools for Generalized Additive Models that exploit the additive structure of such models, scale to large data sets and can be used in conjunction with a wide range of response distributions. The focus is providing visual methods for better understanding the model output and for aiding model checking and development beyond simple exponential family regression. The graphical framework is based on the layering system provided by ggplot2'.
Computes the optimal number of regions (or subdivisions) and their position in serial structures without a priori assumptions and to visualize the results. After reducing data dimensionality with the built-in function for data ordination, regions are fitted as segmented linear regressions along the serial structure. Every region boundary position and increasing number of regions are iteratively fitted and the best model (number of regions and boundary positions) is selected with an information criterion. This package expands on the previous regions package (Jones et al., Science 2018) with improved computation and more fitting and plotting options.
This package provides tools for univariate and multivariate generalized linear models with model averaging and null model technique.
Utilizing a combination of machine learning models (Random Forest, Naive Bayes, K-Nearest Neighbor, Support Vector Machines, Extreme Gradient Boosting, and Linear Discriminant Analysis) and a deep Artificial Neural Network model, MBMethPred can predict medulloblastoma subgroups, including wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4 from DNA methylation beta values. See Sharif Rahmani E, Lawarde A, Lingasamy P, Moreno SV, Salumets A and Modhukur V (2023), MBMethPred: a computational framework for the accurate classification of childhood medulloblastoma subgroups using data integration and AI-based approaches. Front. Genet. 14:1233657. <doi: 10.3389/fgene.2023.1233657> for more details.
The minimax family of distributions is a two-parameter family like the beta family, but computationally a lot more tractible.
Split an untargeted metabolomics data set into a set of likely true metabolites and a set of likely measurement artifacts. This process involves comparing missing rates of pooled plasma samples and biological samples. The functions assume a fixed injection order of samples where biological samples are randomized and processed between intermittent pooled plasma samples. By comparing patterns of missing data across injection order, metabolites that appear in blocks and are likely artifacts can be separated from metabolites that seem to have random dispersion of missing data. The two main metrics used are: 1. the number of consecutive blocks of samples with present data and 2. the correlation of missing rates between biological samples and flanking pooled plasma samples.