Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Regression methods for the meta-SDT model. The package implements methods for cognitive experiments of metacognition as described in Kristensen, S. B., Sandberg, K., & Bibby, B. M. (2020). Regression methods for metacognitive sensitivity. Journal of Mathematical Psychology, 94. <doi:10.1016/j.jmp.2019.102297>.
This package provides a suite of conversion functions to create internally standardized spatial polygons data frames. Utility functions use these data sets to return values such as country, state, time zone, watershed, etc. associated with a set of longitude/latitude pairs. (They also make cool maps.).
Computation of various Markovian models for categorical data including homogeneous Markov chains of any order, MTD models, Hidden Markov models, and Double Chain Markov Models.
Analyzes adverse events in clinical trials using the metalite data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) <https://r4csr.org/>.
This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction; and (3) to employ a jackknife resampling technique to conduct various statistical tests. In addition, this package provides the function for model or data evaluations.This R package offers fast computations for large data sets analyses for various irregular data structures.
Shiny for Open Science to visualize, share, and inventory the main existing human datasets for researchers.
This package performs Multiple Factor Analysis method for quantitative, categorical, frequency and mixed data, in addition to generating a lot of graphics, also has other useful functions.
This package provides tools specifically designed for analyzing longitudinal microbiome data. This tool integrates seven functional modules, providing a systematic framework for microbiome time-series analysis. For more details on inferences involving interspecies interactions see Fisher (2014) <doi:10.1371/journal.pone.0102451>. Details on this package are also described in an unpublished manuscript.
This package provides a data generator of multivariate non-normal data in R. It combines two different methods to generate non-normal data, one with user-specified multivariate skewness and kurtosis (more details can be found in the paper: Qu, Liu, & Zhang, 2019 <doi:10.3758/s13428-019-01291-5>), and the other with the given marginal skewness and kurtosis. The latter one is the widely-used Vale and Maurelli's method. It also contains a function to calculate univariate and multivariate (Mardia's Test) skew and kurtosis.
This package provides methods for detecting signals related to (adverse event, medical product e.g. drugs, vaccines) pairs, a data generation function for simulating pharmacovigilance datasets, and various utility functions. For more details please see Liu A., Mukhopadhyay R., and Markatou M. <doi:10.48550/arXiv.2410.01168>.
Fit Gaussian Multinomial mixed-effects models for small area estimation: Model 1, with one random effect in each category of the response variable (Lopez-Vizcaino,E. et al., 2013) <doi:10.1177/1471082X13478873>; Model 2, introducing independent time effect; Model 3, introducing correlated time effect. mme calculates direct and parametric bootstrap MSE estimators (Lopez-Vizcaino,E et al., 2014) <doi:10.1111/rssa.12085>.
The second version (0.2.0) contains implementation for exact matching which is an alternative to propensity score matching (see Glimm & Yau (2025)). The initial version (0.1.2) contains a collection of easy-to-implement tools for checking whether a MAIC can be conducted, as well as an alternative way of calculating weights (see Glimm & Yau (2021) <doi:10.1002/pst.2210>.).
Compute important quantities when we consider stochastic systems that are observed continuously. Such as, Cost model, Limiting distribution, Transition matrix, Transition distribution and Occupancy matrix. The methods are described, for example, Ross S. (2014), Introduction to Probability Models. Eleven Edition. Academic Press.
Create minimal, responsive, and style-agnostic HTML documents with the lightweight CSS frameworks such as sakura', Water.css', and spcss'. Powerful features include table of contents floating as a sidebar, folding codes and results, and more.
Inspired by pattern matching and enum types in Rust and many functional programming languages, this package offers an updated version of the switch function called Match that accepts atomic values, functions, expressions, and enum variants. Conditions and return expressions are separated by -> and multiple conditions can be associated with the same return expression using |'. Match also includes support for fallthrough'. The package also replicates the Result and Option enums from Rust.
This package provides a declarative language for specifying multilevel models, solving for population parameters based on specified variance-explained effect size measures, generating data, and conducting power analyses to determine sample size recommendations. The specification allows for any number of within-cluster effects, between-cluster effects, covariate effects at either level, and random coefficients. Moreover, the models do not assume orthogonal effects, and predictors can correlate at either level and accommodate models with multiple interaction effects.
Computes multiple correlation coefficient when the data matrix is given and tests its significance.
Lightweight utilities for nucleic acid melting curve analysis are important in life sciences and diagnostics. This software can be used for the analysis and presentation of melting curve data from microbead-based assays (surface melting curve analysis) and reactions in solution (e.g., quantitative PCR (qPCR), real-time isothermal Amplification). Further information are described in detail in two publications in The R Journal [ <https://journal.r-project.org/archive/2013-2/roediger-bohm-schimke.pdf>; <https://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf>].
This package provides a model designed to be a reliable testbed where various gene drive interventions for mosquito-borne diseases control. It is being developed to accommodate the use of various mosquito-specific gene drive systems within a population dynamics framework that allows migration of individuals between patches in landscape. Previous work developing the population dynamics can be found in Deredec et al. (2001) <doi:10.1073/pnas.1110717108> and Hancock & Godfray (2007) <doi:10.1186/1475-2875-6-98>, and extensions to accommodate CRISPR homing dynamics in Marshall et al. (2017) <doi:10.1038/s41598-017-02744-7>.
Multivariate version of the two-sample Gehan and logrank tests, as described in L.J Wei & J.M Lachin (1984) and Persson et al. (2019).
Programmatic access to OncoTree API <http://oncotree.mskcc.org/>. Get access to tumor main types, identifiers and utility routines to map across to other tumor classification systems.
This is a method (MinED) for mining probability distributions using deterministic sampling which is proposed by Joseph, Wang, Gu, Lv, and Tuo (2019) <DOI:10.1080/00401706.2018.1552203>. The MinED samples can be used for approximating the target distribution. They can be generated from a density function that is known only up to a proportionality constant and thus, it might find applications in Bayesian computation. Moreover, the MinED samples are generated with much fewer evaluations of the density function compared to random sampling-based methods such as MCMC and therefore, this method will be especially useful when the unnormalized posterior is expensive or time consuming to evaluate. This research is supported by a U.S. National Science Foundation grant DMS-1712642.
This package provides tools and functions to fit a multilevel index of dissimilarity.
Mixture model with overlapping clusters for binary actor-event data. Parameters are estimated in a Bayesian framework. Model and inference are described in Ranciati, Vinciotti, Wit (2017) Modelling actor-event network data via a mixture model under overlapping clusters. Submitted.