Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The model, developed at the Vienna University of Technology, is a lumped conceptual rainfall-runoff model, following the structure of the HBV model. The model can also be run in a semi-distributed fashion and with dual representation of soil layer. The model runs on a daily or shorter time step and consists of a snow routine, a soil moisture routine and a flow routing routine. See Parajka, J., R. Merz, G. Bloeschl (2007) <DOI:10.1002/hyp.6253> Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments, Hydrological Processes, 21, 435-446.
Fits a wide variety of multivariate spatio-temporal models with simultaneous and lagged interactions among variables (including vector autoregressive spatio-temporal ('VAST') dynamics) for areal, continuous, or network spatial domains. It includes time-variable, space-variable, and space-time-variable interactions using dynamic structural equation models ('DSEM') as expressive interface, and the mgcv package to specify splines via the formula interface. See Thorson et al. (2025) <doi:10.1111/geb.70035> for more details.
This package provides a clinically meaningful measures of treatment effects for right-censored data are provided, based on the concept of Kendall's tau, along with the corresponding inference procedures. Two plots of tau processes, with the option to account for the cure fraction or not, are available. The plots of tau processes serve as useful graphical tools for monitoring the relative performances over time.
Create rich and fully interactive timeline visualizations. Timelines can be included in Shiny apps or R markdown documents. timevis includes an extensive API to manipulate a timeline after creation, and supports getting data out of the visualization into R. Based on the vis.js Timeline JavaScript library.
Builds tables with customizable rows. Users can specify the type of data to use for each row, as well as how to handle missing data and the types of comparison tests to run on the table columns.
This package provides functions for multivariate analysis with compositional data. Includes a function for doing compositional canonical correlation analysis. This analysis requires two data matrices of compositions, which can be adequately transformed and used as entries in a specialized program for canonical correlation analysis, that is able to deal with singular covariance matrices. The methodology is described in Graffelman et al. (2017) <doi:10.1101/144584>. Functions for log-ratio principal component analysis with condition number computations and log-ratio discriminant analysis have been added to the package.
This package implements a decomposition of the two-way fixed effects instrumental variable estimator into all possible Wald difference-in-differences estimators. Provides functions to summarize the contribution of different cohort comparisons to the overall two-way fixed effects instrumental variable estimate, with or without controls. The method is described in Miyaji (2024) <doi:10.48550/arXiv.2405.16467>.
This package provides a toolbox to assist with statistical analysis of animal trajectories. It provides simple access to algorithms for calculating and assessing a variety of characteristics such as speed and acceleration, as well as multiple measures of straightness or tortuosity. Some support is provided for 3-dimensional trajectories. McLean & Skowron Volponi (2018) <doi:10.1111/eth.12739>.
Utility functions and RStudio addins for writing, running and organizing automated tests. Integrates tightly with the packages testthat', devtools and usethis'. Hotkeys can be assigned to the RStudio addins for running tests in a single file or to switch between a source file and the associated test file. In addition, testthis provides function to manage and run tests in subdirectories of the test/testthat directory.
Prebuilt shiny modules containing tools for viewing data, visualizing data, understanding missing and outlier values within your data and performing simple data analysis. This extends teal framework that supports reproducible research and analysis.
The tabularmap is one of the visualization methods for efficiently displaying data consisting of multiple elements by tiling them. When dealing with geospatial, it corrects for differences in visibility between areas.
This package provides access to the complete Pali Canon, or Tipitaka, the canonical scripture for Theravadin Buddhists worldwide. Based on the Chattha Sangayana Tipitaka version 4 (Vipassana Research Institute, 1990).
Base R sometimes requires verbose statements for simple, often recurring tasks, such as printing text without trailing space, ending with newline. This package aims at providing shorthands for such tasks.
This package provides tools for constructing and analyzing two-phase experimental designs under correlated error structures. Version 1.1.1 includes improved efficiency factor classification with tolerance control, updated plot visualizations, and improved clarity of the results. The conceptual framework and the term two-phase were introduced by McIntyre (1955) <doi:10.2307/3001770>).
Language specific cardinal to ordinal number conversion.
Suite of tools to support the practice of tada science. It includes an engaging package roulette that is designed to facilitate learning about new packages.
We present a range of simulations to aid researchers in determining appropriate sample sizes when performing critical thermal limits studies (e.g. CTmin/CTmin experiments). A number of wrapper functions are provided for plotting and summarising outputs from these simulations. This package is presented in van Steenderen, C.J.M., Sutton, G.F., Owen, C.A., Martin, G.D., and Coetzee, J.A. Sample size assessments for thermal physiology studies: An R package and R Shiny application. 2023. Physiological Entomology. <doi:10.1111/phen.12416>. The GUI version of this package is available on the R Shiny online server at: <https://clarkevansteenderen.shinyapps.io/ThermalSampleR_Shiny/> , or it is accessible via GitHub at <https://github.com/clarkevansteenderen/ThermalSampleR_Shiny/>. We would like to thank Grant Duffy (University of Otago, Dundedin, New Zealand) for granting us permission to use the source code for the Test of Total Equivalency function.
Efficient implementations of functions for the creation, modification and analysis of phylogenetic trees. Applications include: generation of trees with specified shapes; tree rearrangement; analysis of tree shape; rooting of trees and extraction of subtrees; calculation and depiction of split support; plotting the position of rogue taxa (Klopfstein & Spasojevic 2019) <doi:10.1371/journal.pone.0212942>; calculation of ancestor-descendant relationships, of stemwardness (Asher & Smith, 2022) <doi:10.1093/sysbio/syab072>, and of tree balance (Mir et al. 2013, Lemant et al. 2022) <doi:10.1016/j.mbs.2012.10.005>, <doi:10.1093/sysbio/syac027>; artificial extinction (Asher & Smith, 2022) <doi:10.1093/sysbio/syab072>; import and export of trees from Newick, Nexus (Maddison et al. 1997) <doi:10.1093/sysbio/46.4.590>, and TNT <https://www.lillo.org.ar/phylogeny/tnt/> formats; and analysis of splits and cladistic information.
This package provides functions for density, cumulative density, quantile and simulation of Tukey g-and-h (1977) distributions. The quantile-based transformation (Hoaglin 1985 <doi:10.1002/9781118150702.ch11>) and its reverse transformation, as well as the letter-value based estimates (Hoaglin 1985), are also provided.
Unit testing is a solid component of automated CI/CD pipelines. tinytest - a lightweight, zero-dependency alternative to testthat was developed. To be able to integrate tinytests results into common CI/CD systems the test results from tinytest need to be caputred and converted to JUnit XML format. tinytest2JUnit enables this conversion while staying also lightweight and only have tinytest as its dependency.
Fit a threshold regression model based on the first-hitting-time of a boundary by the sample path of a Wiener diffusion process. The threshold regression methodology is well suited to applications involving survival and time-to-event data.
The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). Paper: Albrecht, Marco, et al. (2017)<DOI:10.1186/s12859-016-1440-8>.
Allows forecasting time series using nearest neighbors regression Francisco Martinez, Maria P. Frias, Maria D. Perez-Godoy and Antonio J. Rivera (2019) <doi:10.1007/s10462-017-9593-z>. When the forecasting horizon is higher than 1, two multi-step ahead forecasting strategies can be used. The model built is autoregressive, that is, it is only based on the observations of the time series. The nearest neighbors used in a prediction can be consulted and plotted.
Simple definition of time intervals for the current, previous, and next week, month, quarter and year.