Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is an annotation package for Illumina's EPIC v2.0 methylation arrays. The version 2 covers more than 935K CpG sites in the human genome hg38. It is an update of the original EPIC v1.0 array (i.e., the 850K methylation array).
This package provides a enhanced visualization of single-cell data based on gene-weighted density estimation. Nebulosa recovers the signal from dropped-out features and allows the inspection of the joint expression from multiple features (e.g. genes). Seurat and SingleCellExperiment objects can be used within Nebulosa.
This package provides methods to infer clonal tree configuration for a population of cells using single-cell RNA-seq data (scRNA-seq), and possibly other data modalities. Methods are also provided to assign cells to inferred clones and explore differences in gene expression between clones. These methods can flexibly integrate information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. A flexible beta-binomial error model that accounts for stochastic dropout events as well as systematic allelic imbalance is used.
This package uses a Bayesian hierarchical model to detect enriched regions from ChIP-chip experiments. The common goal in analyzing this ChIP-chip data is to detect DNA-protein interactions from ChIP-chip experiments. The BAC package has mainly been tested with Affymetrix tiling array data. However, we expect it to work with other platforms (e.g. Agilent, Nimblegen, cDNA, etc.). Note that BAC does not deal with normalization, so you will have to normalize your data beforehand.
Fit linear models to overdispersed count data. The package can estimate the overdispersion and fit repeated models for matrix input. It is designed to handle large input datasets as they typically occur in single cell RNA-seq experiments.
The rpx package implements an interface to proteomics data submitted to the ProteomeXchange consortium.
This package vendors an assortment of useful header-only C++ libraries. Bioconductor packages can use these libraries in their own C++ code by LinkingTo this package without introducing any additional dependencies. The use of a central repository avoids duplicate vendoring of libraries across multiple R packages, and enables better coordination of version updates across cohorts of interdependent C++ libraries.
This package provides a database of PolyPhen predictions for Homo sapiens dbSNP build 131.
The Spectra package defines an efficient infrastructure for storing and handling mass spectrometry spectra and functionality to subset, process, visualize and compare spectra data. It provides different implementations (backends) to store mass spectrometry data. These comprise backends tuned for fast data access and processing and backends for very large data sets ensuring a small memory footprint.
This is an R package for doublet annotation of single cell RNA sequencing data. scds provides methods to annotate doublets in scRNA-seq data computationally.
The goal of sansSouci is to perform post hoc inference: in a multiple testing context, sansSouci provides statistical guarantees on possibly user-defined and/or data-driven sets of hypotheses.
This package implements widgets to provide user interfaces.
This package provides functionality for interactive visualization of RNA-seq datasets based on Principal Components Analysis. The methods provided allow for quick information extraction and effective data exploration. A Shiny application encapsulates the whole analysis.
This package provides a quality control pipeline for ChIP-exo/nexus sequencing data.
This package provides tools to analyze and visualize high-throughput metabolomics data acquired using chromatography-mass spectrometry. These tools preprocess data in a way that enables reliable and powerful differential analysis.
This package contains experimental genetic data for use with the genomation package. Included are Chip Seq, Methylation and Cage data, downloaded from Encode.
Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner.
This package provides genome wide annotations for Zebrafish, primarily based on mapping using Entrez Gene identifiers.
This package provides Affymetrix Human Genome U95 Set annotation data (hgu95av2) assembled using data from public data repositories.
It has been shown that both DNA methylation and RNA transcription are linked to chronological age and age related diseases. Several estimators have been developed to predict human aging from DNA level and RNA level. Most of the human transcriptional age predictor are based on microarray data and limited to only a few tissues. To date, transcriptional studies on aging using RNASeq data from different human tissues is limited. The aim of this package is to provide a tool for across-tissue and tissue-specific transcriptional age calculation based on GTEx RNASeq data.
RCAS aims to be a standalone RNA-centric annotation system that provides intuitive reports and publication-ready graphics. This package provides the R library implementing most of the pipeline's features.
This package lets you carry out network-based gene set analysis by incorporating external information about interactions among genes, as well as novel interactions learned from data. It implements methods described in Shojaie A, Michailidis G (2010) <doi:10.1093/biomet/asq038>, Shojaie A, Michailidis G (2009) <doi:10.1089/cmb.2008.0081>, and Ma J, Shojaie A, Michailidis G (2016) <doi:10.1093/bioinformatics/btw410>.
This package contains tools to perform additional quality checks on R packages that are to be submitted to the Bioconductor repository.
Lefser is an implementation in R of the popular "LDA Effect Size" (LEfSe) method for microbiome biomarker discovery. It uses the Kruskal-Wallis test, Wilcoxon-Rank Sum test, and Linear Discriminant Analysis to find biomarkers of groups and sub-groups.