Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Assists in the plotting and functional smoothing of traits measured over time and the extraction of features from these traits, implementing the SET (Smoothing and Extraction of Traits) method described in Brien et al. (2020) Plant Methods, 16. Smoothing of growth trends for individual plants using natural cubic smoothing splines or P-splines is available for removing transient effects and segmented smoothing is available to deal with discontinuities in growth trends. There are graphical tools for assessing the adequacy of trait smoothing, both when using this and other packages, such as those that fit nonlinear growth models. A range of per-unit (plant, pot, plot) growth traits or features can be extracted from the data, including single time points, interval growth rates and other growth statistics, such as maximum growth or days to maximum growth. The package also has tools adapted to inputting data from high-throughput phenotyping facilities, such from a Lemna-Tec Scananalyzer 3D (see <https://www.youtube.com/watch?v=MRAF_mAEa7E/> for more information). The package growthPheno can also be installed from <http://chris.brien.name/rpackages/>.
Optimal design analysis algorithms for any study design that can be represented or modelled as a generalised linear mixed model including cluster randomised trials, cohort studies, spatial and temporal epidemiological studies, and split-plot designs. See <https://github.com/samuel-watson/glmmrBase/blob/master/README.md> for a detailed manual on model specification. A detailed discussion of the methods in this package can be found in Watson, Hemming, and Girling (2023) <doi:10.1177/09622802231202379>.
Perform association tests using generalized linear mixed models (GLMMs) in genome-wide association studies (GWAS) and sequencing association studies. First, GMMAT fits a GLMM with covariate adjustment and random effects to account for population structure and familial or cryptic relatedness. For GWAS, GMMAT performs score tests for each genetic variant as proposed in Chen et al. (2016) <DOI:10.1016/j.ajhg.2016.02.012>. For candidate gene studies, GMMAT can also perform Wald tests to get the effect size estimate for each genetic variant. For rare variant analysis from sequencing association studies, GMMAT performs the variant Set Mixed Model Association Tests (SMMAT) as proposed in Chen et al. (2019) <DOI:10.1016/j.ajhg.2018.12.012>, including the burden test, the sequence kernel association test (SKAT), SKAT-O and an efficient hybrid test of the burden test and SKAT, based on user-defined variant sets.
Estimation of gross output production functions and productivity in the presence of numerous fixed (nonflexible) and a single flexible input using the nonparametric identification strategy specified in Gandhi, Navarro, and Rivers (2020) <doi:10.1086/707736>. Monte Carlo evidence from the paper demonstrates high performance in estimating production function elasticities.
This package provides a collection of functions to perform Gaussian quadrature with different weight functions corresponding to the orthogonal polynomials in package orthopolynom. Examples verify the orthogonality and inner products of the polynomials.
This package implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses <doi:10.17608/k6.auckland.9850826.v1>.
The geohabnet package is designed to perform a geographically or spatially explicit risk analysis of habitat connectivity. Xing et al (2021) <doi:10.1093/biosci/biaa067> proposed the concept of cropland connectivity as a risk factor for plant pathogen or pest invasions. As the functions in geohabnet were initially developed thinking on cropland connectivity, users are recommended to first be familiar with the concept by looking at the Xing et al paper. In a nutshell, a habitat connectivity analysis combines information from maps of host density, estimates the relative likelihood of pathogen movement between habitat locations in the area of interest, and applies network analysis to calculate the connectivity of habitat locations. The functions of geohabnet are built to conduct a habitat connectivity analysis relying on geographic parameters (spatial resolution and spatial extent), dispersal parameters (in two commonly used dispersal kernels: inverse power law and negative exponential models), and network parameters (link weight thresholds and network metrics). The functionality and main extensions provided by the functions in geohabnet to habitat connectivity analysis are a) Capability to easily calculate the connectivity of locations in a landscape using a single function, such as sensitivity_analysis() or msean(). b) As backbone datasets, the geohabnet package supports the use of two publicly available global datasets to calculate cropland density. The backbone datasets in the geohabnet package include crop distribution maps from Monfreda, C., N. Ramankutty, and J. A. Foley (2008) <doi:10.1029/2007gb002947> "Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cycles, 22, GB1022" and International Food Policy Research Institute (2019) <doi:10.7910/DVN/PRFF8V> "Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0, Harvard Dataverse, V4". Users can also provide any other geographic dataset that represents host density. c) Because the geohabnet package allows R users to provide maps of host density (as originally in Xing et al (2021)), host landscape density (representing the geographic distribution of either crops or wild species), or habitat distribution (such as host landscape density adjusted by climate suitability) as inputs, we propose the term habitat connectivity. d) The geohabnet package allows R users to customize parameter values in the habitat connectivity analysis, facilitating context-specific (pathogen- or pest-specific) analyses. e) The geohabnet package allows users to automatically visualize maps of the habitat connectivity of locations resulting from a sensitivity analysis across all customized parameter combinations. The primary functions are msean() and sensitivity analysis(). Most functions in geohabnet provide three main outcomes: i) A map of mean habitat connectivity across parameters selected by the user, ii) a map of variance of habitat connectivity across the selected parameters, and iii) a map of the difference between the ranks of habitat connectivity and habitat density. Each function can be used to generate these maps as final outcomes. Each function can also provide intermediate outcomes, such as the adjacency matrices built to perform the analysis, which can be used in other network analysis. Refer to article at <https://garrettlab.github.io/HabitatConnectivity/articles/analysis.html> to see examples of each function and how to access each of these outcome types. To change parameter values, the file called parameters.yaml stores the parameters and their values, can be accessed using get_parameters() and set new parameter values with set_parameters()'. Users can modify up to ten parameters.
This package provides a system for fitting Gompertz Curve in a Time Series Data.
This function performs genomic prediction of cross performance using genotype and phenotype data. It processes data in several steps including loading necessary software, converting genotype data, processing phenotype data, fitting mixed models, and predicting cross performance based on weighted marker effects. For more information, see Labroo et al. (2023) <doi:10.1007/s00122-023-04377-z>.
Quantitative trait loci mapping and genome wide association analysis are used to find candidate molecular marker or region associated with phenotype based on linkage analysis and linkage disequilibrium. Gene expression quantitative trait loci mapping is used to find candidate molecular marker or region associated with gene expression. In this package, we applied the method in Liu W. (2011) <doi:10.1007/s00122-011-1631-7> and Gusev A. (2016) <doi:10.1038/ng.3506> to genome and transcriptome wide association study, which is aimed at revealing the association relationship between phenotype and molecular markers, expression levels, molecular markers nested within different related expression effect and expression effect nested within different related molecular marker effect. F test based on full and reduced model are performed to obtain p value or likelihood ratio statistic. The best linear model can be obtained by stepwise regression analysis.
This package provides a collection of datasets and simplified functions for an introductory (geo)statistics module at University College London. Provides functionality for compositional, directional and spatial data, including ternary diagrams, Wulff and Schmidt stereonets, and ordinary kriging interpolation. Implements logistic and (additive and centred) logratio transformations. Computes vector averages and concentration parameters for the von-Mises distribution. Includes a collection of natural and synthetic fractals, and a simulator for deterministic chaos using a magnetic pendulum example. The main purpose of these functions is pedagogical. Researchers can find more complete alternatives for these tools in other packages such as compositions', robCompositions', sp', gstat and RFOC'. All the functions are written in plain R, with no compiled code and a minimal number of dependencies. Theoretical background and worked examples are available at <https://tinyurl.com/UCLgeostats/>.
Multiple matrices/tensors can be specified and decomposed simultaneously by Probabilistic Latent Tensor Factorisation (PLTF). See the reference section of GitHub README.md <https://github.com/rikenbit/gcTensor>, for details of the method.
Reconstruction of muscle fibers from image stacks using textural analysis. Includes functions for tracking, smoothing, cleaning, plotting and exporting muscle fibers. Also calculates basic fiber properties (e.g., length and curvature).
This package provides a framework for creating plots with glowing points.
Several tests for high dimensional generalized linear models have been proposed recently. In this package, we implemented a new test called adaptive sum of powered score (aSPU) for high dimensional generalized linear models, which is often more powerful than the existing methods in a wide scenarios. We also implemented permutation based version of several existing methods for research purpose. We recommend users use the aSPU test for their real testing problem. You can learn more about the tests implemented in the package via the following papers: 1. Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) <DOI:10.1534/genetics.114.165035> A powerful and adaptive association test for rare variants, Genetics, 197(4). 2. Guo, B., and Chen, S. X. (2016) <DOI:10.1111/rssb.12152>. Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society: Series B. 3. Goeman, J. J., Van Houwelingen, H. C., and Finos, L. (2011) <DOI:10.1093/biomet/asr016>. Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control. Biometrika, 98(2).
Full descriptive statistics, physical description of sediment, metric or phi sieves. Includes a Shiny web application for interactive grain size analysis and visualization.
This package contains an engine for spatially-explicit eco-evolutionary mechanistic models with a modular implementation and several support functions. It allows exploring the consequences of ecological and macroevolutionary processes across realistic or theoretical spatio-temporal landscapes on biodiversity patterns as a general term. Reference: Oskar Hagen, Benjamin Flueck, Fabian Fopp, Juliano S. Cabral, Florian Hartig, Mikael Pontarp, Thiago F. Rangel, Loic Pellissier (2021) "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity" <doi:10.1371/journal.pbio.3001340>.
This package provides an R interface to the GeoNetwork API (<https://geonetwork-opensource.org/#api>) allowing to upload and publish metadata in a GeoNetwork web-application and expose it to OGC CSW.
An efficient algorithm to generate group assignments for classroom settings while minimizing repeated pairings across multiple rounds.
This is a companion to Henry-Stewart talk by Zhao (2026, <doi:10.69645/FRFQ9519>), which gathers information, metadata and scripts to showcase modern genetic analysis -- ranging from testing of polymorphic variant(s) for Hardy-Weinberg equilibrium, association with traits using genetic and statistical models, Bayesian implementation, power calculation in study design, and genetic annotation. It also covers R integration with the Linux environment, GitHub, package creation and web applications. The earlier version by Zhao (2009, <doi:10.69645/DCRY5578>) provides an brief introduction to these topics.
Routines for fitting various joint (and univariate) regression models, with several types of covariate effects, in the presence of equations errors association.
Run a Gibbs sampler for a multivariate Bayesian sparse group selection model with Dirac, continuous and hierarchical spike prior for detecting pleiotropy on the traits. This package is designed for summary statistics containing estimated regression coefficients and its estimated covariance matrix. The methodology is available from: Baghfalaki, T., Sugier, P. E., Truong, T., Pettitt, A. N., Mengersen, K., & Liquet, B. (2021) <doi:10.1002/sim.8855>.
This package provides a novel PRS model is introduced to enhance the prediction accuracy by utilising GxE effects. This package performs Genome Wide Association Studies (GWAS) and Genome Wide Environment Interaction Studies (GWEIS) using a discovery dataset. The package has the ability to obtain polygenic risk scores (PRSs) for a target sample. Finally it predicts the risk values of each individual in the target sample. Users have the choice of using existing models (Li et al., 2015) <doi:10.1093/annonc/mdu565>, (Pandis et al., 2013) <doi:10.1093/ejo/cjt054>, (Peyrot et al., 2018) <doi:10.1016/j.biopsych.2017.09.009> and (Song et al., 2022) <doi:10.1038/s41467-022-32407-9>, as well as newly proposed models for genomic risk prediction (refer to the URL for more details).
The basic idea of this package is provides some tools to help the researcher to work with geostatistics. Initially, we present a collection of functions that allow the researchers to deal with spatial data using bootstrap procedure. There are five methods available and two ways to display them: bootstrap confidence interval - provides a two-sided bootstrap confidence interval; bootstrap plot - a graphic with the original variogram and each of the B bootstrap variograms.