Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Utilize the shiny interface to generate Goodness of Fit (GOF) plots and tables for Non-Linear Mixed Effects (NLME / NONMEM) pharmacometric models. From the interface, users can customize model diagnostics and generate the underlying R code to reproduce the diagnostic plots and tables outside of the shiny session. Model diagnostics can be included in a rmarkdown document and rendered to desired output format.
Allows inferring gene regulatory networks with direct physical interactions from microarray expression data using C3NET.
Wraps the CIRCE (<https://github.com/ohdsi/circe-be>) Java library allowing cohort definition expressions to be edited and converted to Markdown or SQL'.
This package provides comprehensive tools for extracting and analyzing scientific content from PDF documents, including citation extraction, reference matching, text analysis, and bibliometric indicators. Supports multi-column PDF layouts, CrossRef API <https://www.crossref.org/documentation/retrieve-metadata/rest-api/> integration, and advanced citation parsing.
Duplicated music data (pre-processed and formatted) for entity resolution. The total size of the data set is 9763. There are respective gold standard records that are labeled and can be considered as a unique identifier.
This package provides functions for visualizing, animating, solving and analyzing the Rubik's cube. Includes data structures for solvable and unsolvable cubes, random moves and random state scrambles and cubes, 3D displays and animations using OpenGL', patterned cube generation, and lightweight solvers. See Rokicki, T. (2008) <arXiv:0803.3435> for the Kociemba solver.
Proposes Seq2seq Time-Feature Analysis using an Encoder-Decoder to project into latent space and a Forward Network to predict the next sequence.
Visualizes results of item analysis such as item difficulty, item discrimination, and coefficient alpha for ease of result communication.
Calculates power for assessment of intermediate biomarker responses as correlates of risk in the active treatment group in clinical efficacy trials, as described in Gilbert, Janes, and Huang, Power/Sample Size Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials (2016, Statistics in Medicine). The methods differ from past approaches by accounting for the level of clinical treatment efficacy overall and in biomarker response subgroups, which enables the correlates of risk results to be interpreted in terms of potential correlates of efficacy/protection. The methods also account for inter-individual variability of the observed biomarker response that is not biologically relevant (e.g., due to technical measurement error of the laboratory assay used to measure the biomarker response), which is important because power to detect a specified correlate of risk effect size is heavily affected by the biomarker's measurement error. The methods can be used for a general binary clinical endpoint model with a univariate dichotomous, trichotomous, or continuous biomarker response measured in active treatment recipients at a fixed timepoint after randomization, with either case-cohort Bernoulli sampling or case-control without-replacement sampling of the biomarker (a baseline biomarker is handled as a trivial special case). In a specified two-group trial design, the computeN() function can initially be used for calculating additional requisite design parameters pertaining to the target population of active treatment recipients observed to be at risk at the biomarker sampling timepoint. Subsequently, the power calculation employs an inverse probability weighted logistic regression model fitted by the tps() function in the osDesign package. Power results as well as the relationship between the correlate of risk effect size and treatment efficacy can be visualized using various plotting functions. To link power calculations for detecting a correlate of risk and a correlate of treatment efficacy, a baseline immunogenicity predictor (BIP) can be simulated according to a specified classification rule (for dichotomous or trichotomous BIPs) or correlation with the biomarker response (for continuous BIPs), then outputted along with biomarker response data under assignment to treatment, and clinical endpoint data for both treatment and placebo groups.
Explore calcium (Ca) and phosphate (Pi) homeostasis with two novel Shiny apps, building upon on a previously published mathematical model written in C, to ensure efficient computations. The underlying model is accessible here <https://pubmed.ncbi.nlm.nih.gov/28747359/)>. The first application explores the fundamentals of Ca-Pi homeostasis, while the second provides interactive case studies for in-depth exploration of the topic, thereby seeking to foster student engagement and an integrative understanding of Ca-Pi regulation.
This package implements parametric (Direct) regression methods for modeling cumulative incidence functions (CIFs) in the presence of competing risks. Methods include the direct Gompertz-based approach and generalized regression models as described in Jeong and Fine (2006) <doi:10.1111/j.1467-9876.2006.00532.x> and Jeong and Fine (2007) <doi:10.1093/biostatistics/kxj040>. The package facilitates maximum likelihood estimation, variance computation, with applications to clinical trials and survival analysis.
Classification method described in Dancik et al (2011) <doi:10.1158/0008-5472.CAN-11-2427> that classifies a sample according to the class with the maximum mean (or any other function of) correlation between the test and training samples with known classes.
Package for CShapes 2.0, a GIS dataset of country borders (1886-today). Includes functions for data extraction and the computation of distance matrices and -lists.
Datasets related to the Comrades Marathon used in the book Antony Unwin (2024, ISBN:978-0367674007) "Getting (more out of) Graphics". The main dataset contains the times of every runner that finished in the time limit for each year the race was run.
The biases introduced in association measures, particularly mutual information, are influenced by factors such as tumor purity, mutation burden, and hypermethylation. This package provides the estimation of conditional mutual information (CMI) and its statistical significance with a focus on its application to multi-omics data. Utilizing B-spline functions (inspired by Daub et al. (2004) <doi:10.1186/1471-2105-5-118>), the package offers tools to estimate the association between heterogeneous multi- omics data, while removing the effects of confounding factors. This helps to unravel complex biological interactions. In addition, it includes methods to evaluate the statistical significance of these associations, providing a robust framework for multi-omics data integration and analysis. This package is ideal for researchers in computational biology, bioinformatics, and systems biology seeking a comprehensive tool for understanding interdependencies in omics data.
Computes genomic breeding values using external information on the markers. The package fits a linear mixed model with heteroscedastic random effects, where the random effect variance is fitted using a linear predictor and a log link. The method is described in Mouresan, Selle and Ronnegard (2019) <doi:10.1101/636746>.
This package provides a function that facilitates fitting three types of models for contrast-based Bayesian Network Meta Analysis. The first model is that which is described in Lu and Ades (2006) <doi:10.1198/016214505000001302>. The other two models are based on a Bayesian nonparametric methods that permit ties when comparing treatment or for a treatment effect to be exactly equal to zero. In addition to the model fits, the package provides a summary of the interplay between treatment effects based on the procedure described in Barrientos, Page, and Lin (2023) <doi:10.48550/arXiv.2207.06561>.
Load Current Population Survey (CPS) microdata into R using the Census Bureau Data API (<https://www.census.gov/data/developers/data-sets.html>), including basic monthly CPS and CPS ASEC microdata.
This package implements a classification method described by Grice (2011, ISBN:978-0-12-385194-9) using binary procrustes rotation; a simplified version of procrustes rotation.
In clinical practice and research settings in medicine and the behavioral sciences, it is often of interest to quantify the correlation of a continuous endpoint that was repeatedly measured (e.g., test-retest correlations, ICC, etc.). This package allows for estimating these correlations based on mixed-effects models. Part of this software has been developed using funding provided from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
Quantifies and assesses the significance of convergent evolution using multiple methods and measures as described in Stayton (2015) <DOI: 10.1111/evo.12729> and Grossnickle et al. 2023. Also displays results in various ways.
This package provides similar functionality to Microsoft Excel CUMPRINC function <https://support.microsoft.com/en-us/office/cumprinc-function-94a4516d-bd65-41a1-bc16-053a6af4c04d>. Returns principal remaining at a given month, principal paid in a month, and accumulated principal paid at a given month based on original loan amount, monthly interest rate, and term of loan.
This package provides functions to access data from public RESTful APIs including FINDIC API', REST Countries API', World Bank API', and Nager.Date', retrieving real-time or historical data related to Chile such as financial indicators, holidays, international demographic and geopolitical indicators, and more. Additionally, the package includes curated datasets related to Chile, covering topics such as human rights violations during the Pinochet regime, electoral data, census samples, health surveys, seismic events, territorial codes, and environmental measurements. The package supports research and analysis focused on Chile by integrating open APIs with high-quality datasets from multiple domains. For more information on the APIs, see: FINDIC <https://findic.cl/>, REST Countries <https://restcountries.com/>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and Nager.Date <https://date.nager.at/Api>.
This package implements the board game CamelUp for use in introductory statistics classes using a Shiny app.