Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits hidden Markov models of discrete character evolution which allow different transition rate classes on different portions of a phylogeny. Beaulieu et al (2013) <doi:10.1093/sysbio/syt034>.
This package provides a tool for exploring correlations. It makes it possible to easily perform routine tasks when exploring correlation matrices such as ignoring the diagonal, focusing on the correlations of certain variables against others, or rearranging and visualizing the matrix in terms of the strength of the correlations.
This package provides methods for the import/export and automated analysis of concept maps and concept landscapes (sets of concept maps).
Price credit default swaps using C code from the International Swaps and Derivatives Association CDS Standard Model. See <https://www.cdsmodel.com/cdsmodel/documentation.html> for more information about the model and <https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for license details for the C code.
This package contains greedy algorithms for coarse approximation linear functions.
This package provides tools for evaluating link prediction and clustering algorithms with respect to ground truth. Includes efficient implementations of common performance measures such as pairwise precision/recall, cluster homogeneity/completeness, variation of information, Rand index etc.
The primary motivation of this package is to take the things that are great about the R packages flextable <https://davidgohel.github.io/flextable/> and officer <https://davidgohel.github.io/officer/>, take the standard and complex pieces of formatting clinical tables for regulatory use, and simplify the tedious pieces.
Load Current Population Survey (CPS) microdata into R using the Census Bureau Data API (<https://www.census.gov/data/developers/data-sets.html>), including basic monthly CPS and CPS ASEC microdata.
This package implements the Cross-contribution Compensating Multiple standard Normalization (CCMN) method described in Redestig et al. (2009) Analytical Chemistry <doi:10.1021/ac901143w> and other normalization algorithms.
Parameters of a user-specified probability distribution are modelled by a multi-layer perceptron artificial neural network. This framework can be used to implement probabilistic nonlinear models including mixture density networks, heteroscedastic regression models, zero-inflated models, etc. following Cannon (2012) <doi:10.1016/j.cageo.2011.08.023>.
Logic game in the style of the early 1980s home computers that can be played in the R console. This game is inspired by Mastermind, a game that became popular in the 1970s. Can you break the code?
This package implements the framework introduced in Di Francesco and Mellace (2025) <doi:10.48550/arXiv.2502.11691>, shifting the focus to well-defined and interpretable estimands that quantify how treatment affects the probability distribution over outcome categories. It supports selection-on-observables, instrumental variables, regression discontinuity, and difference-in-differences designs.
This package provides tools for extracting occurrences, assessing potential driving factors, predicting occurrences, and quantifying impacts of compound events in hydrology and climatology. Please see Hao Zengchao et al. (2019) <doi:10.1088/1748-9326/ab4df5>.
Extends the did package to improve efficiency and handling of unbalanced panel data. Bellego, Benatia, and Dortet-Bernadet (2024), "The Chained Difference-in-Differences", Journal of Econometrics, <doi:10.1016/j.jeconom.2024.105783>.
Computes and visualize the results of the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <DOI:10.1137/080718851>. The algorithm is available in parallel for the independent values of parameter c. Additionally, fast RQA is added to distinguish chaos from noise.
This package provides functions for performing experimental comparisons of algorithms using adequate sample sizes for power and accuracy. Implements the methodology originally presented in Campelo and Takahashi (2019) <doi:10.1007/s10732-018-9396-7> for the comparison of two algorithms, and later generalised in Campelo and Wanner (Submitted, 2019) <arxiv:1908.01720>.
This package provides a tool for causal meta-analysis. This package implements the aggregation formulas and inference methods proposed in Berenfeld et al. (2025) <doi:10.48550/arXiv.2505.20168>. Users can input aggregated data across multiple studies and compute causally meaningful aggregated effects of their choice (risk difference, risk ratio, odds ratio, etc) under user-specified population weighting. The built-in function camea() allows to obtain precise variance estimates for these effects and to compare the latter to a classical meta-analysis aggregate, the random effect model, as implemented in the metafor package <https://CRAN.R-project.org/package=metafor>.
This package implements a kernel-based association test for copy number variation (CNV) aggregate analysis in a certain genomic region (e.g., gene set, chromosome, or genome) that is robust to the within-locus and across-locus etiological heterogeneity, and bypass the need to define a "locus" unit for CNVs. Brucker, A., et al. (2020) <doi:10.1101/666875>.
This package implements parametric (Direct) regression methods for modeling cumulative incidence functions (CIFs) in the presence of competing risks. Methods include the direct Gompertz-based approach and generalized regression models as described in Jeong and Fine (2006) <doi:10.1111/j.1467-9876.2006.00532.x> and Jeong and Fine (2007) <doi:10.1093/biostatistics/kxj040>. The package facilitates maximum likelihood estimation, variance computation, with applications to clinical trials and survival analysis.
Create contour lines for a non regular series of points, potentially from a non-regular canvas.
In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The crew.cluster package extends the mirai'-powered crew package with worker launcher plugins for traditional high-performance computing systems. Inspiration also comes from packages mirai by Gao (2023) <https://github.com/r-lib/mirai>, future by Bengtsson (2021) <doi:10.32614/RJ-2021-048>, rrq by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrq>, clustermq by Schubert (2019) <doi:10.1093/bioinformatics/btz284>), and batchtools by Lang, Bischl, and Surmann (2017). <doi:10.21105/joss.00135>.
This package contains a time series classification method that obtains a set of filters that maximize the between-class and minimize the within-class distances.
Supports quantitative research in scientometrics and bibliometrics. Provides various tools for preprocessing bibliographic data retrieved, e.g., from Elsevier's Scopus, computing bibliometric impact of individuals, or modelling phenomena encountered in the social sciences. This package is deprecated; see agop instead.
We design algorithms with linear time complexity with respect to the dimension for three commonly studied correlation structures, including exchangeable, decaying-product and K-dependent correlation structures, and extend the algorithms to generate binary data of general non-negative correlation matrices with quadratic time complexity. Jiang, W., Song, S., Hou, L. and Zhao, H. "A set of efficient methods to generate high-dimensional binary data with specified correlation structures." The American Statistician. See <doi:10.1080/00031305.2020.1816213> for a detailed presentation of the method.