Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bayesian inference under log-normality assumption must be performed very carefully. In fact, under the common priors for the variance, useful quantities in the original data scale (like mean and quantiles) do not have posterior moments that are finite (Fabrizi et al. 2012 <doi:10.1214/12-BA733>). This package allows to easily carry out a proper Bayesian inferential procedure by fixing a suitable distribution (the generalized inverse Gaussian) as prior for the variance. Functions to estimate several kind of means (unconditional, conditional and conditional under a mixed model) and quantiles (unconditional and conditional) are provided.
This package provides a Bayesian data modeling scheme that performs four interconnected tasks: (i) characterizes the uncertainty of the elicited parametric prior; (ii) provides exploratory diagnostic for checking prior-data conflict; (iii) computes the final statistical prior density estimate; and (iv) executes macro- and micro-inference. Primary reference is Mukhopadhyay, S. and Fletcher, D. 2018 paper "Generalized Empirical Bayes via Frequentist Goodness of Fit" (<https://www.nature.com/articles/s41598-018-28130-5 >).
An implementation of methods for extracting a sparse unweighted network (i.e. a backbone) from an unweighted network (e.g., Hamann et al., 2016 <doi:10.1007/s13278-016-0332-2>), a weighted network (e.g., Serrano et al., 2009 <doi:10.1073/pnas.0808904106>), or a weighted projection (e.g., Neal et al., 2021 <doi:10.1038/s41598-021-03238-3>).
Bayesian Linear Regression.
Collection of procedures to perform Bayesian analysis on a variety of factor models. Currently, it includes: "Bayesian Exploratory Factor Analysis" (befa) from G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014) <doi:10.1016/j.jeconom.2014.06.008>, an approach to dedicated factor analysis with stochastic search on the structure of the factor loading matrix. The number of latent factors, as well as the allocation of the manifest variables to the factors, are not fixed a priori but determined during MCMC sampling.
Consider an at-most-K-stage group sequential design with only an upper bound for the last analysis and non-binding lower bounds.With binary endpoint, two kinds of test can be applied, asymptotic test based on normal distribution and exact test based on binomial distribution. This package supports the computation of boundaries and conditional power for single-arm group sequential test with binary endpoint, via either asymptotic or exact test. The package also provides functions to obtain boundary crossing probabilities given the design.
Carry out Bayesian estimation and forecasting for a variety of stochastic mortality models using vague prior distributions. Models supported include numerous well-established approaches introduced in the actuarial and demographic literature, such as the Lee-Carter (1992) <doi:10.1080/01621459.1992.10475265>, the Cairns-Blake-Dowd (2009) <doi:10.1080/10920277.2009.10597538>, the Li-Lee (2005) <doi:10.1353/dem.2005.0021>, and the Plat (2009) <doi:10.1016/j.insmatheco.2009.08.006> models. The package is designed to analyse stratified mortality data structured as a 3-dimensional array of dimensions p à A à T (strata à age à year). Stratification can represent factors such as cause of death, country, deprivation level, sex, geographic region, insurance product, marital status, socioeconomic group, or smoking behavior. While the primary focus is on analysing stratified data (p > 1), the package can also handle mortality data that are not stratified (p = 1). Model selection via the Deviance Information Criterion (DIC) is supported.
Box-Cox-type transformations for linear and logistic models with random effects using non-parametric profile maximum likelihood estimation, as introduced in Almohaimeed (2018) <http://etheses.dur.ac.uk/12831/> and Almohaimeed and Einbeck (2022) <doi:10.1177/1471082X20966919>. The main functions are optim.boxcox() for linear models with random effects and boxcoxtype() for logistic models with random effects.
Build decision trees and random forests for classification and regression. The implementation strikes a balance between minimizing computing efforts and maximizing the expected predictive accuracy, thus scales well to large data sets. Multi-threading is available through OpenMP <https://gcc.gnu.org/wiki/openmp>.
An implementation of sensitivity and robustness methods in Bayesian networks in R. It includes methods to perform parameter variations via a variety of co-variation schemes, to compute sensitivity functions and to quantify the dissimilarity of two Bayesian networks via distances and divergences. It further includes diagnostic methods to assess the goodness of fit of a Bayesian networks to data, including global, node and parent-child monitors. Reference: M. Leonelli, R. Ramanathan, R.L. Wilkerson (2022) <doi:10.1016/j.knosys.2023.110882>.
Component-wise gradient boosting for analysis of multiply imputed datasets. Implements the algorithm Boosting after Multiple Imputation (MIBoost), which enforces uniform variable selection across imputations and provides utilities for pooling. Includes a cross-validation workflow that first splits the data into training and validation sets and then performs imputation on the training data, applying the learned imputation models to the validation data to avoid information leakage. Supports Gaussian and logistic loss. Methods relate to gradient boosting and multiple imputation as in Buehlmann and Hothorn (2007) <doi:10.1214/07-STS242>, Friedman (2001) <doi:10.1214/aos/1013203451>, and van Buuren (2018, ISBN:9781138588318) and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>; see also Kuchen (2025) <doi:10.48550/arXiv.2507.21807>.
Utility functions, datasets and extended examples for survival analysis. This extends a range of other packages, some simple wrappers for time-to-event analyses, datasets, and extensive examples in HTML with R scripts. The package also supports the course Biostatistics III entitled "Survival analysis for epidemiologists in R".
Fully Bayesian inference for estimating the number of clusters and related parameters to heterogeneous binary data.
Bayesian analysis for stochastic extensions of non-linear dynamic systems using advanced computational algorithms. Described in Bouranis, L., Demiris, N., Kalogeropoulos, K., and Ntzoufras, I. (2022) <doi:10.48550/arXiv.2211.15229>.
We utilize the Bradley-Terry Model to estimate the abilities of teams using paired comparison data. For dynamic approximation of current rankings, we employ the Exponential Decayed Log-likelihood function, and we also apply the Lasso penalty for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.
Decision tree algorithm with a major feature added. Allows for users to define an ordering on the partitioning process. Resulting in Branch-Exclusive Splits Trees (BEST). Cedric Beaulac and Jeffrey S. Rosentahl (2019) <arXiv:1804.10168>.
This package provides a tool to perform all different statistical tests and calculations needed by Biological dosimetry Laboratories. Detailed documentation is available in <https://biodosetools-team.github.io/documentation/>.
Implementation of the bootstrapping approach for the estimation of clustering stability and its application in estimating the number of clusters, as introduced by Yu et al (2016)<doi:10.1142/9789814749411_0007>. Implementation of the non-parametric bootstrap approach to assessing the stability of module detection in a graph, the extension for the selection of a parameter set that defines a graph from data in a way that optimizes stability and the corresponding visualization functions, as introduced by Tian et al (2021) <doi:10.1002/sam.11495>. Implemented out-of-bag stability estimation function and k-select Smin-based k-selection function as introduced by Liu et al (2022) <doi:10.1002/sam.11593>. Implemented ensemble clustering method based-on k-means clustering method, spectral clustering method and hierarchical clustering method.
Perform seasonal adjustment and forecasting of weekly data. The package provides a user-friendly interface for computing seasonally adjusted estimates and forecasts of weekly time series and includes functions for the construction of country-specific prior adjustment variables, as well as diagnostic tools to assess the quality of the adjustments. The methodology is described in more detail in Ginker (2024) <doi:10.13140/RG.2.2.12221.44000>.
This package provides a box compatible custom language parser for the languageserver package to provide completion and signature hints in code editors.
Bayesian Latent Class Analysis using several different methods.
Assume that a temporal process is composed of contiguous segments with differing slopes and replicated noise-corrupted time series measurements are observed. The unknown mean of the data generating process is modelled as a piecewise linear function of time with an unknown number of change-points. The package infers the joint posterior distribution of the number and position of change-points as well as the unknown mean parameters per time-series by MCMC sampling. A-priori, the proposed model uses an overfitting number of mean parameters but, conditionally on a set of change-points, only a subset of them influences the likelihood. An exponentially decreasing prior distribution on the number of change-points gives rise to a posterior distribution concentrating on sparse representations of the underlying sequence, but also available is the Poisson distribution. See Papastamoulis et al (2017) <arXiv:1709.06111> for a detailed presentation of the method.
The Bayesian optimal interval (BOIN) design is a novel phase I clinical trial design for finding the maximum tolerated dose (MTD). It can be used to design both single-agent and drug-combination trials. The BOIN design is motivated by the top priority and concern of clinicians when testing a new drug, which is to effectively treat patients and minimize the chance of exposing them to subtherapeutic or overly toxic doses. The prominent advantage of the BOIN design is that it achieves simplicity and superior performance at the same time. The BOIN design is algorithm-based and can be implemented in a simple way similar to the traditional 3+3 design. The BOIN design yields an average performance that is comparable to that of the continual reassessment method (CRM, one of the best model-based designs) in terms of selecting the MTD, but has a substantially lower risk of assigning patients to subtherapeutic or overly toxic doses. For tutorial, please check Yan et al. (2020) <doi:10.18637/jss.v094.i13>.
This package provides the facility to calculate the Brainerd-Robinson similarity coefficient for the rows of an input table, and to calculate the significance of each coefficient based on a permutation approach; a heatmap is produced to visually represent the similarity matrix. Optionally, hierarchical agglomerative clustering can be performed and the silhouette method is used to identify an optimal number of clusters; the results of the clustering can be optionally used to sort the heatmap.