Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Description: Computes maximum likelihood estimates of general, zero-inflated, and zero-altered models for discrete and continuous distributions. It also performs Kolmogorov-Smirnov (KS) tests and likelihood ratio tests for general, zero-inflated, and zero-altered data. Additionally, it obtains the inverse of the Fisher information matrix and confidence intervals for the parameters of general, zero-inflated, and zero-altered models. The package simulates random deviates from zero-inflated or hurdle models to obtain maximum likelihood estimates. Based on the work of Aldirawi et al. (2022) <doi:10.1007/s42519-021-00230-y> and Dousti Mousavi et al. (2023) <doi:10.1080/00949655.2023.2207020>.
This package provides functions are provided to read and convert AIFF audio files to WAVE (WAV) format. This supports, for example, use of the tuneR package, which does not currently handle AIFF files. The AIFF file format is defined in <https://web.archive.org/web/20080125221040/http://www.borg.com/~jglatt/tech/aiff.htm> and <https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf> .
This package provides a comprehensive set of tools for descriptive statistics, graphical data exploration, outlier detection, homoscedasticity testing, and multiple comparison procedures. Includes manual implementations of Levene's test, Bartlett's test, and the Fligner-Killeen test, as well as post hoc comparison methods such as Tukey, Scheffé, Games-Howell, Brunner-Munzel, and others. This version introduces two new procedures: the Jonckheere-Terpstra trend test and the Jarque-Bera test with Glinskiy's (2024) correction. Designed for use in teaching, applied statistical analysis, and reproducible research. Additionally you can find a post hoc Test Planner, which helps you to make a decision on which procedure is most suitable.
Finds, prioritizes and deletes erroneous taxa in a phylogenetic tree. This package calculates scores for taxa in a tree. Higher score means the taxon is more erroneous. If the score is zero for a taxon, the taxon is not erroneous. This package also can remove all erroneous taxa automatically by iterating score calculation and pruning taxa with the highest score.
This package implements wavelet-based approaches for describing population admixture. Principal Components Analysis (PCA) is used to define the population structure and produce a localized admixture signal for each individual. Wavelet summaries of the PCA output describe variation present in the data and can be related to population-level demographic processes. For more details, see J Sanderson, H Sudoyo, TM Karafet, MF Hammer and MP Cox. 2015. Reconstructing past admixture processes from local genomic ancestry using wavelet transformation. Genetics 200:469-481 <doi:10.1534/genetics.115.176842>.
This package provides an interface in R to cell atlas approximations. See the vignette under "Getting started" for instructions. You can also explore the reference documentation for specific functions. Additional interfaces and resources are available at <https://atlasapprox.readthedocs.io>.
Construct language-aware lists. Make "and"-separated and "or"-separated lists that automatically conform to the user's language settings.
This package provides a function to calculate multiple performance metrics for actual and predicted values. In total eight metrics will be calculated for particular actual and predicted series. Helps to describe a Statistical model's performance in predicting a data. Also helps to compare various models performance. The metrics are Root Mean Squared Error (RMSE), Relative Root Mean Squared Error (RRMSE), Mean absolute Error (MAE), Mean absolute percentage error (MAPE), Mean Absolute Scaled Error (MASE), Nash-Sutcliffe Efficiency (NSE), Willmottâ s Index (WI), and Legates and McCabe Index (LME). Among them, first five are expected to be lesser whereas, the last three are greater the better. More details can be found from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202> and Garai et al. (2024) <doi:10.1007/s11063-024-11552-w>.
Colour palettes and a ggplot2 theme to follow the UK Government Analysis Function best practice guidance for producing data visualisations, available at <https://analysisfunction.civilservice.gov.uk/policy-store/data-visualisation-charts/>. Includes continuous and discrete colour and fill scales, as well as a ggplot2 theme.
Autoregressive-based decomposition of a time series based on the approach in West (1997). Particular cases include the extraction of trend and seasonal components.
Accumulated Local Effects (ALE) were initially developed as a model-agnostic approach for global explanations of the results of black-box machine learning algorithms. ALE has a key advantage over other approaches like partial dependency plots (PDP) and SHapley Additive exPlanations (SHAP): its values represent a clean functional decomposition of the model. As such, ALE values are not affected by the presence or absence of interactions among variables in a mode. Moreover, its computation is relatively rapid. This package reimplements the algorithms for calculating ALE data and develops highly interpretable visualizations for plotting these ALE values. It also extends the original ALE concept to add bootstrap-based confidence intervals and ALE-based statistics that can be used for statistical inference. For more details, see Okoli, Chitu. 2023. â Statistical Inference Using Machine Learning and Classical Techniques Based on Accumulated Local Effects (ALE).â arXiv. <doi:10.48550/arXiv.2310.09877>.
An interface for performing all stages of ADMIXTOOLS analyses (<https://github.com/dreichlab/admixtools>) entirely from R. Wrapper functions (D, f4, f3, etc.) completely automate the generation of intermediate configuration files, run ADMIXTOOLS programs on the command-line, and parse output files to extract values of interest. This allows users to focus on the analysis itself instead of worrying about low-level technical details. A set of complementary functions for processing and filtering of data in the EIGENSTRAT format is also provided.
Utility functions to check data, variables and conditions for functions used in admiral and admiral extension packages. Additional utility helper functions to assist developers with maintaining documentation, testing and general upkeep of admiral and admiral extension packages.
Analyzes autocorrelation and partial autocorrelation using surrogate methods and bootstrapping, and computes the acceleration constants for the vectorized moving block bootstrap provided by this package. It generates percentile, bias-corrected, and accelerated intervals and estimates partial autocorrelations using Durbin-Levinson. This package calculates the autocorrelation power spectrum, computes cross-correlations between two time series, computes bandwidth for any time series, and performs autocorrelation frequency analysis. It also calculates the periodicity of a time series.
Provides: (1) Tools to infer dominance hierarchies based on calculating Elo scores, but with custom functions to improve estimates in animals with relatively stable dominance ranks. (2) Tools to plot the shape of the dominance hierarchy and estimate the uncertainty of a given data set.
This package provides tools supporting multi-criteria and group decision making, including variable number of criteria, by means of aggregation operators, spread measures, fuzzy logic connectives, fusion functions, and preordered sets. Possible applications include, but are not limited to, quality management, scientometrics, software engineering, etc.
This package provides functions that facilitate the use of accepted taxonomic nomenclature, collection of functional trait data, and assignment of functional group classifications to phytoplankton species. Possible classifications include Morpho-functional group (MFG; Salmaso et al. 2015 <doi:10.1111/fwb.12520>) and CSR (Reynolds 1988; Functional morphology and the adaptive strategies of phytoplankton. In C.D. Sandgren (ed). Growth and reproductive strategies of freshwater phytoplankton, 388-433. Cambridge University Press, New York). Versions 2.0.0 and later includes new functions for querying the algaebase online taxonomic database (www.algaebase.org), however these functions require a valid API key that must be acquired from the algaebase administrators. Note that none of the algaeClassify authors are affiliated with algaebase in any way. Taxonomic names can also be checked against a variety of taxonomic databases using the Global Names Resolver service via its API (<https://resolver.globalnames.org/api>). In addition, currently accepted and outdated synonyms, and higher taxonomy, can be extracted for lists of species from the ITIS database using wrapper functions for the ritis package. The algaeClassify package is a product of the GEISHA (Global Evaluation of the Impacts of Storms on freshwater Habitat and Structure of phytoplankton Assemblages), funded by CESAB (Centre for Synthesis and Analysis of Biodiversity) and the U.S. Geological Survey John Wesley Powell Center for Synthesis and Analysis, with data and other support provided by members of GLEON (Global Lake Ecology Observation Network). DISCLAIMER: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.
Multidimensional scaling models and methods for the visualization and analysis of asymmetric proximity data. An asymmetric data matrix has the same number of rows and columns, and these rows and columns refer to the same set of objects. At least some elements in the upper-triangle are different from the corresponding elements in the lower triangle. An example of an asymmetric matrix is a student migration table, where the rows correspond to the countries of origin of the students and the columns to the destination countries. This package provides algorithms for three multidimensional scaling models, the slide-vector model, a scaling model with unique dimensions and the asymscal model.Furthermore, some other procedures, such as a heat map for skew-symmetric data, and the decomposition of asymmetry are also provided for the exploratory analysis of asymmetric tables.
Add-on for arules to handle and mine frequent sequences. Provides interfaces to the C++ implementation of cSPADE by Mohammed J. Zaki.
In fields such as ecology, microbiology, and genomics, non-Euclidean distances are widely applied to describe pairwise dissimilarity between samples. Given these pairwise distances, principal coordinates analysis (PCoA) is commonly used to construct a visualization of the data. However, confounding covariates can make patterns related to the scientific question of interest difficult to observe. We provide aPCoA as an easy-to-use tool to improve data visualization in this context, enabling enhanced presentation of the effects of interest. Details are described in Yushu Shi, Liangliang Zhang, Kim-Anh Do, Christine Peterson and Robert Jenq (2020) Bioinformatics, Volume 36, Issue 13, 4099-4101.
An implementation of the Aligned Rank Transform technique for factorial analysis (see references below for details) including models with missing terms (unsaturated factorial models). The function first computes a separate aligned ranked response variable for each effect of the user-specified model, and then runs a classic ANOVA on each of the aligned ranked responses. For further details, see Higgins, J. J. and Tashtoush, S. (1994). An aligned rank transform test for interaction. Nonlinear World 1 (2), pp. 201-211. Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins,J.J. (2011). The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 11). New York: ACM Press, pp. 143-146. <doi:10.1145/1978942.1978963>.
This package provides methods for fitting identity-link GLMs and GAMs to discrete data, using EM-type algorithms with more stable convergence properties than standard methods.
This package provides direct access to the ALFRED (<https://alfred.stlouisfed.org>) and FRED (<https://fred.stlouisfed.org>) databases. Its functions return tidy data frames for different releases of the specified time series. Note that this product uses the FRED© API but is not endorsed or certified by the Federal Reserve Bank of St. Louis.
Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) <DOI:10.3390/ijms161025897>.