Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Suite of tools that facilitate exposure-response analysis using Bayesian methods. The package provides a streamlined workflow for fitting types of models that are commonly used in exposure-response analysis - linear and Emax for continuous endpoints, logistic linear and logistic Emax for binary endpoints, as well as performing simulation and visualization. Learn more about the workflow at <https://genentech.github.io/BayesERbook/>.
Currently, the package provides several functions for plotting and analyzing bibliometric data (JIF, Journal Impact Factor, and paper percentile values), beamplots with citations and percentiles, and three plot functions to visualize the result of a reference publication year spectroscopy (RPYS) analysis performed in the free software CRExplorer (see <http://crexplorer.net>). Further extension to more plot variants is planned.
Bayesian analysis of luminescence data and C-14 age estimates. Bayesian models are based on the following publications: Combes, B. & Philippe, A. (2017) <doi:10.1016/j.quageo.2017.02.003> and Combes et al. (2015) <doi:10.1016/j.quageo.2015.04.001>. This includes, amongst others, data import, export, application of age models and palaeodose model.
The Multivariate Generalized Autoregressive Conditional Heteroskedasticity (MGARCH) models are used for modelling the volatile multivariate data sets. In this package a variant of MGARCH called BEKK (Baba, Engle, Kraft, Kroner) proposed by Engle and Kroner (1995) <http://www.jstor.org/stable/3532933> has been used to estimate the bivariate time series data using Bayesian technique.
Implementation of a statistical approach for estimating the joint health effects of multiple concurrent exposures, as described in Bobb et al (2015) <doi:10.1093/biostatistics/kxu058>.
Highly efficient functions for estimating various rank (centrality) measures of nodes in bipartite graphs (two-mode networks). Includes methods for estimating HITS, CoHITS, BGRM, and BiRank with implementation primarily inspired by He et al. (2016) <doi:10.1109/TKDE.2016.2611584>. Also provides easy-to-use tools for efficiently estimating PageRank in one-mode graphs, incorporating or removing edge-weights during rank estimation, projecting two-mode graphs to one-mode, and for converting edgelists and matrices to sparseMatrix format. Best of all, the package's rank estimators can work directly with common formats of network data including edgelists (class data.frame, data.table, or tbl_df) and adjacency matrices (class matrix or dgCMatrix).
Simulation and parameter estimation of multitype Bienayme - Galton - Watson processes.
This package provides a developing software suite for multiple change-point and change-point-type feature detection/estimation (data segmentation) in data sequences.
This package implements a class and methods to work with sets, doing intersection, union, complementary sets, power sets, cartesian product and other set operations in a "tidy" way. These set operations are available for both classical sets and fuzzy sets. Import sets from several formats or from other several data structures.
This package contains data sets regarding songs on the Billboard Hot 100 list from 1960 to 2016. The data sets include the ranks for the given year, musical features of a lot of the songs and lyrics for several of the songs as well.
Time series regression using dynamic linear models fit using MCMC. See Scott and Varian (2014) <DOI:10.1504/IJMMNO.2014.059942>, among many other sources.
Some very simple infrastructure for basis functions.
Bindings to the blowfish password hashing algorithm <https://www.openbsd.org/papers/bcrypt-paper.pdf> derived from the OpenBSD implementation.
Imports benthic count data, reformats this data, and computes environmental inferences from this data.
Identifies genome-related molecular traits with significant evidence of genetic regulation and performs a bootstrap procedure to correct estimated effect sizes for over-estimation present in cis-QTL mapping studies (The "Winner's Curse"), described in Huang QQ *et al.* 2018 <doi: 10.1093/nar/gky780>.
Generate the James Blinding Index, as described in James et al (1996) <https://pubmed.ncbi.nlm.nih.gov/8841652/> and the Bang Blinding Index, as described in Bang et al (2004) <https://pubmed.ncbi.nlm.nih.gov/15020033/>. These are measures to assess whether or not satisfactory blinding has been maintained in a randomized, controlled, clinical trial. These can be generated for trial subjects, research coordinators and principal investigators, based upon standardized questionnaires that have been administered, to assess whether or not they can correctly guess to which treatment arm (e.g. placebo or treatment) subjects were assigned at randomization.
Bell regression models for count data with overdispersion. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) <doi:10.1016/j.apm.2017.12.014> and Lemonte et al. (2020) <doi:10.1080/02664763.2019.1636940>.
Survey systems and other third-party data sources commonly use non-standard representations of logical values when it comes to qualitative data - "Yes", "No" and "N/A", say. batman is a package designed to seamlessly convert these into logicals. It is highly localised, and contains equivalents to boolean values in languages including German, French, Spanish, Italian, Turkish, Chinese and Polish.
Computes appropriate confidence intervals for the likelihood ratio tests commonly used in medicine/epidemiology, using the method of Marill et al. (2015) <doi:10.1177/0962280215592907>. It is particularly useful when the sensitivity or specificity in the sample is 100%. Note that this does not perform the test on nested models--for that, see epicalc::lrtest'.
Simplify bivariate and regression analyses by automating result generation, including summary tables, statistical tests, and customizable graphs. It supports tests for continuous and dichotomous data, as well as stepwise regression for linear, logistic, and Firth penalized logistic models. While not a substitute for tailored analysis, BiVariAn accelerates workflows and is expanding features like multilingual interpretations of results.The methods for selecting significant statistical tests, as well as the predictor selection in prediction functions, can be referenced in the works of Marc Kery (2003) <doi:10.1890/0012-9623(2003)84[92:NORDIG]2.0.CO;2> and Rainer Puhr (2017) <doi:10.1002/sim.7273>.
The blocked weighted bootstrap (BBW) is an estimation technique for use with data from two-stage cluster sampled surveys in which either prior weighting (e.g. population-proportional sampling or PPS as used in Standardized Monitoring and Assessment of Relief and Transitions or SMART surveys) or posterior weighting (e.g. as used in rapid assessment method or RAM and simple spatial sampling method or S3M surveys) is implemented. See Cameron et al (2008) <doi:10.1162/rest.90.3.414> for application of bootstrap to cluster samples. See Aaron et al (2016) <doi:10.1371/journal.pone.0163176> and Aaron et al (2016) <doi:10.1371/journal.pone.0162462> for application of the blocked weighted bootstrap to estimate indicators from two-stage cluster sampled surveys.
Generates different posterior distributions of adjusted odds ratio under different priors of sensitivity and specificity, and plots the models for comparison. It also provides estimations for the specifications of the models using diagnostics of exposure status with a non-linear mixed effects model. It implements the methods that are first proposed in <doi:10.1016/j.annepidem.2006.04.001> and <doi:10.1177/0272989X09353452>.
This package provides a set of models to estimate nonlinear longitudinal data using Bayesian estimation methods. These models include the: 1) Bayesian Piecewise Random Effects Model (Bayes_PREM()) which estimates a piecewise random effects (mixture) model for a given number of latent classes and a latent number of possible changepoints in each class, and can incorporate class and outcome predictive covariates (see Lamm (2022) <https://hdl.handle.net/11299/252533> and Lock et al., (2018) <doi:10.1007/s11336-017-9594-5>), 2) Bayesian Crossed Random Effects Model (Bayes_CREM()) which estimates a linear, quadratic, exponential, or piecewise crossed random effects models where individuals are changing groups over time (e.g., students and schools; see Rohloff et al., (2024) <doi:10.1111/bmsp.12334>), and 3) Bayesian Bivariate Piecewise Random Effects Model (Bayes_BPREM()) which estimates a bivariate piecewise random effects model to jointly model two related outcomes (e.g., reading and math achievement; see Peralta et al., (2022) <doi:10.1037/met0000358>).
This package provides tools for constructing board/grid based games, as well as readily available game(s) for your entertainment.