Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Efficiently creates, manipulates, and subsets "dist" objects, commonly used in cluster analysis. Designed to minimise unnecessary conversions and computational overhead while enabling seamless interaction with distance matrices.
Estimation of the total population size from capture-recapture data efficiently and with low bias implementing the methods from Das M, Kennedy EH, and Jewell NP (2021) <arXiv:2104.14091>. The estimator is doubly robust against errors in the estimation of the intermediate nuisance parameters. Users can choose from the flexible estimation models provided in the package, or use any other preferred model.
An intuitive, cross-platform graphical data analysis system. It uses menus and dialogs to guide the user efficiently through the data manipulation and analysis process, and has an excel like spreadsheet for easy data frame visualization and editing. Deducer works best when used with the Java based R GUI JGR, but the dialogs can be called from the command line. Dialogs have also been integrated into the Windows Rgui.
Kevin Dowd's book Measuring Market Risk is a widely read book in the area of risk measurement by students and practitioners alike. As he claims, MATLAB indeed might have been the most suitable language when he originally wrote the functions, but, with growing popularity of R it is not entirely valid. As Dowd's code was not intended to be error free and were mainly for reference, some functions in this package have inherited those errors. An attempt will be made in future releases to identify and correct them. Dowd's original code can be downloaded from www.kevindowd.org/measuring-market-risk/. It should be noted that Dowd offers both MMR2 and MMR1 toolboxes. Only MMR2 was ported to R. MMR2 is more recent version of MMR1 toolbox and they both have mostly similar function. The toolbox mainly contains different parametric and non parametric methods for measurement of market risk as well as backtesting risk measurement methods.
CRAN packages DoE.base and Rmosek and non-'CRAN package gurobi are enhanced with functionality for the creation of optimized arrays for experimentation, where optimization is in terms of generalized minimum aberration. It is also possible to optimally extend existing arrays to larger run size. The package writes MPS (Mathematical Programming System) files for use with any mixed integer optimization software that can process such files. If at least one of the commercial products Gurobi or Mosek (free academic licenses available for both) is available, the package also creates arrays by optimization. For installing Gurobi and its R package gurobi', follow instructions at <https://support.gurobi.com/hc/en-us/articles/14462206790033-How-do-I-install-Gurobi-for-R>. For installing Mosek and its R package Rmosek', follow instructions at <https://www.mosek.com/downloads/> and <https://docs.mosek.com/8.1/rmosek/install-interface.html>, or use the functionality in the stump CRAN R package Rmosek'.
Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. ddml simplifies estimation based on (short-)stacking as discussed in Ahrens et al. (2024) <doi:10.1002/jae.3103>, which leverages multiple base learners to increase robustness to the underlying data generating process.
Written to help undergraduate as well as graduate students to get started with R for basic econometrics without the need to import specific functions and datasets from many different sources. Primarily, the package is meant to accompany the German textbook Auer, L.v., Hoffmann, S., Kranz, T. (2024, ISBN: 978-3-662-68263-0) from which the exercises cover all the topics from the textbook Auer, L.v. (2023, ISBN: 978-3-658-42699-6).
By adding over-relaxation factor to PXEM (Parameter Expanded Expectation Maximization) method, the MOPXEM (Monotonically Overrelaxed Parameter Expanded Expectation Maximization) method is obtained. Compare it with the existing EM (Expectation-Maximization)-like methods. Then, distribute and process five methods and compare them, achieving good performance in convergence speed and result quality.The philosophy of the package is described in Guo G. (2022) <doi:10.1007/s00180-022-01270-z>.
This package provides a series of functions which aid in both simulating and determining the properties of finite, discrete-time, discrete state markov chains. Two functions (DTMC, MultDTMC) produce n iterations of a Markov Chain(s) based on transition probabilities and an initial distribution. The function FPTime determines the first passage time into each state. The function statdistr determines the stationary distribution of a Markov Chain.
Functions, methods, and datasets for fitting dimension reduction regression, using slicing (methods SAVE and SIR), Principal Hessian Directions (phd, using residuals and the response), and an iterative IRE. Partial methods, that condition on categorical predictors are also available. A variety of tests, and stepwise deletion of predictors, is also included. Also included is code for computing permutation tests of dimension. Adding additional methods of estimating dimension is straightforward. For documentation, see the vignette in the package. With version 3.0.4, the arguments for dr.step have been modified.
This package provides functions to manage databases: select, update, insert, and delete records, list tables, backup tables as CSV files, and import CSV files as tables.
This package provides a key-value dictionary data structure based on R6 class which is designed to be similar usages with other languages dictionary (e.g. Python') with reference semantics and extendabilities by R6.
There are various functions for managing and cleaning data before the application of different approaches. This includes identifying and erasing sudden jumps in dendrometer data not related to environmental change, identifying the time gaps of recordings, and changing the temporal resolution of data to different frequencies. Furthermore, the package calculates daily statistics of dendrometer data, including the daily amplitude of tree growth. Various approaches can be applied to separate radial growth from daily cyclic shrinkage and expansion due to uptake and loss of stem water. In addition, it identifies periods of consecutive days with user-defined climatic conditions in daily meteorological data, then check what trees are doing during that period.
First using dada2 R tools to analyse metabarcode data, the DBTC package then uses the BLAST algorithm to search unknown sequences against local databases, and then takes reduced matched results and provides best taxonomic assignments.
This package provides a collection of data-limited management procedures that can be evaluated with management strategy evaluation with the MSEtool package, or applied to fishery data to provide management recommendations.
Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain variables on a torus. The user chooses the algorithm to use to find the nearest neighbours. Two such algorithms, provided by the packages RANN <https://cran.r-project.org/package=RANN>, and nabor <https://cran.r-project.org/package=nabor>, are suggested.
This package implements survival proximity score matching in multi-state survival models. Includes tools for simulating survival data and estimating transition-specific coxph models with frailty terms. The primary methodological work on multistate censored data modeling using propensity score matching has been published by Bhattacharjee et al.(2024) <doi:10.1038/s41598-024-54149-y>.
R interface for the Google Cloud Services Document AI API <https://cloud.google.com/document-ai> with additional tools for output file parsing and text reconstruction. Document AI is a powerful server-based OCR service that extracts text and tables from images and PDF files with high accuracy. daiR gives R users programmatic access to this service and additional tools to handle and visualize the output. See the package website <https://dair.info/> for more information and examples.
Computations of Fisher's z-tests concerning different kinds of correlation differences. The diffpwr family entails approaches to estimating statistical power via Monte Carlo simulations. Important to note, the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid if the prerequisites do not hold. To this end, the bootcor family provides bootstrapping confidence intervals for the incorporated correlation difference tests.
This package produces SPSS- and SAS-like output for linear discriminant function analysis and canonical correlation analysis. The methods are described in Manly & Alberto (2017, ISBN:9781498728966), Rencher (2002, ISBN:0-471-41889-7), and Tabachnik & Fidell (2019, ISBN:9780134790541).
This package provides fast methods to work with Merton's distance to default model introduced in Merton (1974) <doi:10.1111/j.1540-6261.1974.tb03058.x>. The methods includes simulation and estimation of the parameters.
This package performs Diffusion Non-Additive (DNA) model proposed by Heo, Boutelet, and Sung (2025+) <doi:10.48550/arXiv.2506.08328> for multi-fidelity computer experiments with tuning parameters. The DNA model captures nonlinear dependencies across fidelity levels using Gaussian process priors and is particularly effective when simulations at different fidelity levels are nonlinearly correlated. The DNA model targets not only interpolation across given fidelity levels but also extrapolation to smaller tuning parameters including the exact solution corresponding to a zero-valued tuning parameter, leveraging a nonseparable covariance kernel structure that models interactions between the tuning parameter and input variables. Closed-form expressions for the predictive mean and variance enable efficient inference and uncertainty quantification. Hyperparameters in the model are estimated via maximum likelihood estimation.
To overcome the memory limitations for fitting linear (LM) and Generalized Linear Models (GLMs) to large data sets, this package implements the Divide and Recombine (D&R) strategy. It basically divides the entire large data set into suitable subsets manageable in size and then fits model to each subset. Finally, results from each subset are aggregated to obtain the final estimate. This package also supports fitting GLMs to data sets that cannot fit into memory and provides methods for fitting GLMs under linear regression, binomial regression, Poisson regression, and multinomial logistic regression settings. Respective models are fitted using different D&R strategies as described by: Xi, Lin, and Chen (2009) <doi:10.1109/TKDE.2008.186>, Xi, Lin and Chen (2006) <doi:10.1109/TKDE.2006.196>, Zuo and Li (2018) <doi:10.4236/ojs.2018.81003>, Karim, M.R., Islam, M.A. (2019) <doi:10.1007/978-981-13-9776-9>.
This package provides flexible examples of LLN and CLT for teaching purposes in secondary school.