Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Data used in Taback, N. (2022). Design and Analysis of Experiments and Observational Studies using R. Chapman & Hall/CRC.
Creating a great user interface for your Shiny apps can be a hassle, especially if you want to work purely in R and don't want to use, for instance HTML templates. This package adds support for a powerful UI library Fomantic UI - <https://fomantic-ui.com/> (before Semantic). It also supports universal UI input binding that works with various DOM elements.
This package provides functions for small area estimation.
Graphs (or networks) and graph component calculations for spatial locations in 1D, 2D, 3D etc.
Create Upset plots using a combination of ggplot2 and patchwork'.
Identifies individuals in a social network who should be the intervention subjects for a network intervention in which you have a group of targets, a group of avoiders, and a group that is neither.
Using the adjustment method from Benjamini & Hochberg (1995) <doi:10.1111/j.2517-6161.1995.tb02031.x>, this package determines which variables are significant under repeated testing with a given dataframe of p values and an user defined "q" threshold. It then returns the original dataframe along with a significance column where an asterisk denotes a significant p value after FDR calculation, and NA denotes all other p values. This package uses the Benjamini & Hochberg method specifically as described in Lee, S., & Lee, D. K. (2018) <doi:10.4097/kja.d.18.00242>.
This package provides movies to help students to understand statistical concepts. The rpanel package <https://cran.r-project.org/package=rpanel> is used to create interactive plots that move to illustrate key statistical ideas and methods. There are movies to: visualise probability distributions (including user-supplied ones); illustrate sampling distributions of the sample mean (central limit theorem), the median, the sample maximum (extremal types theorem) and (the Fisher transformation of the) product moment correlation coefficient; examine the influence of an individual observation in simple linear regression; illustrate key concepts in statistical hypothesis testing. Also provided are dpqr functions for the distribution of the Fisher transformation of the correlation coefficient under sampling from a bivariate normal distribution.
This package provides modular functions and applications for quickly generating plots and tables. Each modular function opens a graphical user interface providing the user with options to create and customise plots and tables.
Get sun position, sunlight phases (times for sunrise, sunset, dusk, etc.), moon position and lunar phase for the given location and time. Most calculations are based on the formulas given in Astronomy Answers articles about position of the sun and the planets : <https://www.aa.quae.nl/en/reken/zonpositie.html>.
This package provides user friendly methods for the identification of sequence patterns that are statistically significantly associated with a property of the sequence. For instance, SeqFeatR allows to identify viral immune escape mutations for hosts of given HLA types. The underlying statistical method is Fisher's exact test, with appropriate corrections for multiple testing, or Bayes. Patterns may be point mutations or n-tuple of mutations. SeqFeatR offers several ways to visualize the results of the statistical analyses, see Budeus (2016) <doi:10.1371/journal.pone.0146409>.
This package provides functions for efficiently estimating properties of the Van Genuchten-Mualem model for soil hydraulic parameters from possibly sparse soil water retention and hydraulic conductivity data by multi-response parameter estimation methods (Stewart, W.E., Caracotsios, M. Soerensen, J.P. (1992) "Parameter estimation from multi-response data" <doi:10.1002/aic.690380502>). Parameter estimation is simplified by exploiting the fact that residual and saturated water contents and saturated conductivity are conditionally linear parameters (Bates, D. M. and Watts, D. G. (1988) "Nonlinear Regression Analysis and Its Applications" <doi:10.1002/9780470316757>). Estimated parameters are optionally constrained by the evaporation characteristic length (Lehmann, P., Bickel, S., Wei, Z. and Or, D. (2020) "Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions" <doi:10.1029/2019WR025963>) to ensure that the estimated parameters are physically valid. Common S3 methods and further utility functions allow to process, explore and visualise estimation results.
Simulate a virtual population of subjects that has demographic distributions (height, weight, and BMI) and correlations (height and weight), by sex and age, which mimic those reported in real-world anthropometric growth charts (CDC, WHO, or Fenton).
Data Sets for Kumar and Petersen (2012). Statistical Methods in Customer Relationship Management, Wiley: New York.
Interface to interact with the modelling framework SIMPLACE and to parse the results of simulations.
Computes spatial position models: the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.
This package implements a two-stage estimation approach for Cox regression using five-parameter M-spline functions to model the baseline hazard. It allows for flexible hazard shapes and model selection based on log-likelihood criteria as described in Teranishi et al.(2025). In addition, the package provides functions for constructing and evaluating B-spline copulas based on five M-spline or I-spline basis functions, allowing users to flexibly model and compute bivariate dependence structures. Both the copula function and its density can be evaluated. Furthermore, the package supports computation of dependence measures such as Kendall's tau and Spearman's rho, derived analytically from the copula parameters.
The package performs a sensitivity analysis in an observational study using an M-statistic, for instance, the mean. The main function in the package is senmv(), but amplify() and truncatedP() are also useful. The method is developed in Rosenbaum Biometrics, 2007, 63, 456-464, <doi:10.1111/j.1541-0420.2006.00717.x>.
This package contains human behaviour datasets collected by the SAMPLING project (<https://sampling.warwick.ac.uk>).
Utility functions for spectroscopy. 1. Functions to simulate spectra for use in teaching or testing. 2. Functions to process files created by LoggerPro and SpectraSuite software.
This package provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
Sample size estimation and blinded sample size reestimation in Adaptive Study Design.
This package provides a graph community detection algorithm that aims to be performant on large graphs and robust, returning consistent results across runs. SpeakEasy 2 (SE2), the underlying algorithm, is described in Chris Gaiteri, David R. Connell & Faraz A. Sultan et al. (2023) <doi:10.1186/s13059-023-03062-0>. The core algorithm is written in C', providing speed and keeping the memory requirements low. This implementation can take advantage of multiple computing cores without increasing memory usage. SE2 can detect community structure across scales, making it a good choice for biological data, which often has hierarchical structure. Graphs can be passed to the algorithm as adjacency matrices using base R matrices, the Matrix library, igraph graphs, or any data that can be coerced into a matrix.
Data sets from Ramsey, F.L. and Schafer, D.W. (2002), "The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)", Duxbury.