Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simulation tool to facilitate determination of required sample size to achieve category saturation for studies using multiple repertory grids in conjunction with content analysis.
Maps of France in 1830, multivariate datasets from A.-M. Guerry and others, and statistical and graphic methods related to Guerry's "Moral Statistics of France". The goal is to facilitate the exploration and development of statistical and graphic methods for multivariate data in a geospatial context of historical interest.
We implement and extend the Dividing Local Gaussian Process algorithm by Lederer et al. (2020) <doi:10.48550/arXiv.2006.09446>. Its main use case is in online learning where it is used to train a network of local GPs (referred to as tree) by cleverly partitioning the input space. In contrast to a single GP, GPTreeO is able to deal with larger amounts of data. The package includes methods to create the tree and set its parameter, incorporating data points from a data stream as well as making joint predictions based on all relevant local GPs.
Implementation of the Generalized Score Matching estimator in Yu et al. (2019) <https://jmlr.org/papers/v20/18-278.html> for non-negative graphical models (truncated Gaussian, exponential square-root, gamma, a-b models) and univariate truncated Gaussian distributions. Also includes the original estimator for untruncated Gaussian graphical models from Lin et al. (2016) <doi:10.1214/16-EJS1126>, with the addition of a diagonal multiplier.
This package provides an interface to the GenderAPI.io web service (<https://www.genderapi.io>) for determining gender from personal names, email addresses, or social media usernames. Functions are available to submit single or batch queries and retrieve additional information such as accuracy scores and country-specific gender predictions. This package simplifies integration of GenderAPI.io into R workflows for data cleaning, user profiling, and analytics tasks.
This package provides statistical transformations for plotting empirical ordinary Lorenz curve (Lorenz 1905) <doi:10.2307/2276207> and generalized Lorenz curve (Shorrocks 1983) <doi:10.2307/2554117>.
Evaluates likelihood ratio tests for alleged ancestry. Implements the methods of Tvedebrink et al (2018) <doi:10.1016/j.tpb.2017.12.004>.
Kernel regularized least squares, also known as kernel ridge regression, is a flexible machine learning method. This package implements this method by providing a smooth term for use with mgcv and uses random sketching to facilitate scalable estimation on large datasets. It provides additional functions for calculating marginal effects after estimation and for use with ensembles ('SuperLearning'), double/debiased machine learning ('DoubleML'), and robust/clustered standard errors ('sandwich'). Chang and Goplerud (2024) <doi:10.1017/pan.2023.27> provide further details.
This is an add on package to GAMLSS. The purpose of this package is to allow users to defined truncated distributions in GAMLSS models. The main function gen.trun() generates truncated version of an existing GAMLSS family distribution.
Allows user to have graphical user interface to perform analysis of Agricultural experimental data. On using the functions in this package a Interactive User Interface will pop up. Apps Works by simple upload of files in CSV format.
The gene-set distance analysis of omic data is implemented by generalizing distance correlations to evaluate the association of a gene set with categorical and censored event-time variables.
Support for geostatistical analysis of multivariate data, in particular data with restrictions, e.g. positive amounts, compositions, distributional data, microstructural data, etc. It includes descriptive analysis and modelling for such data, both from a two-point Gaussian perspective and multipoint perspective. The methods mainly follow Tolosana-Delgado, Mueller and van den Boogaart (2018) <doi:10.1007/s11004-018-9769-3>.
Visualizes two-dimensional geoelectric resistivity measurement profiles in three dimensions.
Inference, goodness-of-fit test, and prediction densities and intervals for univariate Gaussian Hidden Markov Models (HMM). The goodness-of-fit is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Chapter 10.2 of Remillard (2013) <doi:10.1201/b14285>.
The ggplot2 package is the state-of-the-art toolbox for creating and formatting graphs. However, it is easy to forget how certain formatting commands are named and sometimes users find themselves asking: How do you rotate the x-axis labels again? Or how do you hide the legend...? This package allows users to issue natural language commands related to theme-related styling of plots (colors, font size and such), which then are translated into valid ggplot2 commands.
Generalized estimating equations with the original sandwich variance estimator proposed by Liang and Zeger (1986), and eight types of more recent modified variance estimators for improving the finite small-sample performance.
This package provides functions and data are provided that support a course that emphasizes statistical issues of inference and generalizability. The functions are designed to make it straightforward to illustrate the use of cross-validation, the training/test approach, simulation, and model-based estimates of accuracy. Methods considered are Generalized Additive Modeling, Linear and Quadratic Discriminant Analysis, Tree-based methods, and Random Forests.
Multivariate time series analysis based on Generalized Space-Time Autoregressive Model by Ruchjana et al.(2012) <doi:10.1063/1.4724118>.
Modern Parallel Coordinate Plots have been introduced in the 1980s as a way to visualize arbitrarily many numeric variables. This Grammar of Graphics implementation also incorporates categorical variables into the plots in a principled manner. By separating the data managing part from the visual rendering, we give full access to the users while keeping the number of parameters manageably low.
This package provides methods for fitting macroevolutionary models to phylogenetic trees Pennell (2014) <doi:10.1093/bioinformatics/btu181>.
Sequential strategies for finding a game equilibrium are proposed in a black-box setting (expensive pay-off evaluations, no derivatives). The algorithm handles noiseless or noisy evaluations. Two acquisition functions are available. Graphical outputs can be generated automatically. V. Picheny, M. Binois, A. Habbal (2018) <doi:10.1007/s10898-018-0688-0>. M. Binois, V. Picheny, P. Taillandier, A. Habbal (2020) <doi:10.48550/arXiv.1902.06565>.
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.
Regression using GMDH algorithms from Prof. Alexey G. Ivakhnenko. Group Method of Data Handling (GMDH), or polynomial neural networks, is a family of inductive algorithms that performs gradually complicated polynomial models and selecting the best solution by an external criterion. In other words, inductive GMDH algorithms give possibility finding automatically interrelations in data, and selecting an optimal structure of model or network. The package includes GMDH Combinatorial, GMDH MIA (Multilayered Iterative Algorithm), GMDH GIA (Generalized Iterative Algorithm) and GMDH Combinatorial with Active Neurons.
Variable selection deviation (VSD) measures and instability tests for high-dimensional model selection methods such as LASSO, SCAD and MCP, etc., to decide whether the sparse patterns identified by those methods are reliable.