Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an R wrapper for the implementation of FI-tSNE from the python package openTNSE. See Poličar et al. (2019) <doi:10.1101/731877> and the algorithm described by Linderman et al. (2018) <doi:10.1038/s41592-018-0308-4>.
This package provides functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH.
This is a collection of publically available spatial omics datasets. Where possible we have curated these datasets as either SpatialExperiments, MoleculeExperiments or CytoImageLists and included annotations of the sample characteristics.
This package allows users to estimate the science-wise false discovery rate from Jager and Leek, "Empirical estimates suggest most published medical research is true," 2013, Biostatistics, using an EM approach due to the presence of rounding and censoring. It also allows users to estimate the false discovery rate conditional on covariates, using a regression framework, as per Boca and Leek, "A direct approach to estimating false discovery rates conditional on covariates," 2018, PeerJ.
Synapsis is a Bioconductor software package for automated (unbiased and reproducible) analysis of meiotic immunofluorescence datasets. The primary functions of the software can i) identify cells in meiotic prophase that are labelled by a synaptonemal complex axis or central element protein, ii) isolate individual synaptonemal complexes and measure their physical length, iii) quantify foci and co-localise them with synaptonemal complexes, iv) measure interference between synaptonemal complex-associated foci. The software has applications that extend to multiple species and to the analysis of other proteins that label meiotic prophase chromosomes. The software converts meiotic immunofluorescence images into R data frames that are compatible with machine learning methods. Given a set of microscopy images of meiotic spread slides, synapsis crops images around individual single cells, counts colocalising foci on strands on a per cell basis, and measures the distance between foci on any given strand.
This is an ExperimentHub package that provides access to the data generated and analyzed in the [smoking-nicotine-mouse](https://github.com/LieberInstitute/smoking-nicotine-mouse/) LIBD project. The datasets contain the expression data of mouse genes, transcripts, exons, and exon-exon junctions across 208 samples from pup and adult mouse brain, and adult blood, that were exposed to nicotine, cigarette smoke, or controls. They also contain relevant metadata of these samples and gene expression features, such QC metrics, if they were used after filtering steps and also if the features were differently expressed in the different experiments.
This package is a Shiny app for interactively analyzing and visualizing Nanostring GeoMX Whole Transcriptome Atlas data. Users have the option of exploring a sample data to explore this app's functionality. Regions of interest (ROIs) can be filtered based on any user-provided metadata. Upon taking two or more groups of interest, all pairwise and ANOVA-like testing are automatically performed. Available ouputs include PCA, Volcano plots, tables and heatmaps. Aesthetics of each output are highly customizable.
Demonstrate tokenization and a search gadget for collections of CSV files.
Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set.
The SimBenchData package contains a total of 35 single-cell RNA-seq datasets covering a wide range of data characteristics, including major sequencing protocols, multiple tissue types, and both human and mouse sources.
scClassify is a multiscale classification framework for single-cell RNA-seq data based on ensemble learning and cell type hierarchies, enabling sample size estimation required for accurate cell type classification and joint classification of cells using multiple references.
R client and utilities for Seven Bridges platform API, from Cancer Genomics Cloud to other Seven Bridges supported platforms.
SCAN is a microarray normalization method to facilitate personalized-medicine workflows. Rather than processing microarray samples as groups, which can introduce biases and present logistical challenges, SCAN normalizes each sample individually by modeling and removing probe- and array-specific background noise using only data from within each array. SCAN can be applied to one-channel (e.g., Affymetrix) or two-channel (e.g., Agilent) microarrays. The Universal exPression Codes (UPC) method is an extension of SCAN that estimates whether a given gene/transcript is active above background levels in a given sample. The UPC method can be applied to one-channel or two-channel microarrays as well as to RNA-Seq read counts. Because UPC values are represented on the same scale and have an identical interpretation for each platform, they can be used for cross-platform data integration.
This package provides a set of tools for working with miRNA affinity models (KdModels), efficiently scanning for miRNA binding sites, and predicting target repression. It supports scanning using miRNA seeds, full miRNA sequences (enabling 3 alignment) and KdModels, and includes the prediction of slicing and TDMD sites. Finally, it includes utility and plotting functions (e.g. for the visual representation of miRNA-target alignment).
Mass-Spectrometry based spatial proteomics have enabled the proteome-wide mapping of protein subcellular localization (Orre et al. 2019, Molecular Cell). SubCellBarCode R package robustly classifies proteins into corresponding subcellular localization.
Select hits from synthetic lethal RNAi screen data. For example, there are two identical celllines except one gene is knocked-down in one cellline. The interest is to find genes that lead to stronger lethal effect when they are knocked-down further by siRNA. Quality control and various visualisation tools are implemented. Four different algorithms could be used to pick up the interesting hits. This package is designed based on 384 wells plates, but may apply to other platforms with proper configuration.
SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.
This package provides a shiny interface to the scanMiR package. The application enables the scanning of transcripts and custom sequences for miRNA binding sites, the visualization of KdModels and binding results, as well as browsing predicted repression data. In addition contains the IndexedFst class for fast indexed reading of large GenomicRanges or data.frames, and some utilities for facilitating scans and identifying enriched miRNA-target pairs.
An example dataset for use with the SVM2CRM package.
Like all gene expression data, single-cell data suffers from batch effects and other unwanted variations that makes accurate biological interpretations difficult. The scMerge method leverages factor analysis, stably expressed genes (SEGs) and (pseudo-) replicates to remove unwanted variations and merge multiple single-cell data. This package contains all the necessary functions in the scMerge pipeline, including the identification of SEGs, replication-identification methods, and merging of single-cell data.
Spaniel includes a series of tools to aid the quality control and analysis of Spatial Transcriptomics data. Spaniel can import data from either the original Spatial Transcriptomics system or 10X Visium technology. The package contains functions to create a SingleCellExperiment Seurat object and provides a method of loading a histologial image into R. The spanielPlot function allows visualisation of metrics contained within the S4 object overlaid onto the image of the tissue.
SuperCellCyto provides the ability to summarise cytometry data into supercells by merging together cells that are similar in their marker expressions using the SuperCell package.
SpotClean is a computational method to adjust for spot swapping in spatial transcriptomics data. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the case due to bleed from nearby spots, an artifact we refer to as spot swapping. SpotClean is able to estimate the contamination rate in observed data and decontaminate the spot swapping effect, thus increase the sensitivity and precision of downstream analyses.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Sugar\_Cane\_probe\_tab.