Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Error variance estimation in ultrahigh dimensional datasets with four different methods, viz. Refitted cross validation, k-fold refitted cross validation, Bootstrap-refitted cross validation, Ensemble method.
Applies affine and similarity transformations on vector spatial data (sp objects). Transformations can be defined from control points or directly from parameters. If redundant control points are provided Least Squares is applied allowing to obtain residuals and RMSE.
Recursive partitioning for varying coefficient generalized linear models and ordinal linear mixed models. Special features are coefficient-wise partitioning, non-varying coefficients and partitioning of time-varying variables in longitudinal regression. A description of a part of this package was published by Burgin and Ritschard (2017) <doi:10.18637/jss.v080.i06>.
This package provides a set of functions to: (1) perform fuzzy clustering of vegetation data (De Caceres et al, 2010) <doi:10.1111/j.1654-1103.2010.01211.x>; (2) to assess ecological community similarity on the basis of structure and composition (De Caceres et al, 2013) <doi:10.1111/2041-210X.12116>.
This package provides a collection of tools for analyzing the field of vision. It provides a framework for development and use of innovative methods for visualization, statistical analysis, and clinical interpretation of visual-field loss and its change over time. It is intended to be a tool for collaborative research. The package is described in Marin-Franch and Swanson (2013) <doi:10.1167/13.4.10> and is part of the Open Perimetry Initiative (OPI) [Turpin, Artes, and McKendrick (2012) <doi:10.1167/12.11.22>].
This package provides fast sampling from von Mises-Fisher distribution using the method proposed by Andrew T.A Wood (1994) <doi:10.1080/03610919408813161>.
Declarative template-based framework for verifying that objects meet structural requirements, and auto-composing error messages when they do not.
This package provides a nonparametric method to estimate Toeplitz covariance matrices from a sample of n independently and identically distributed p-dimensional vectors with mean zero. The data is preprocessed with the discrete cosine matrix and a variance stabilization transformation to obtain an approximate Gaussian regression setting for the log-spectral density function. Estimates of the spectral density function and the inverse of the covariance matrix are provided as well. Functions for simulating data and a protein data example are included. For details see (Klockmann, Krivobokova; 2023), <arXiv:2303.10018>.
This package provides a set of functions for data transformations. Transformations are performed on character and numeric data. As the scope of the package is within Student Analytics, there are functions focused around the academic year.
Implementation of the variable banding procedure for modeling local dependence and estimating precision matrices that is introduced in Yu & Bien (2016) and is available at <https://arxiv.org/abs/1604.07451>.
Using frequency matrices, very low frequency variants (VLFs) are assessed for amino acid and nucleotide sequences. The VLFs are then compared to see if they occur in only one member of a species, singleton VLFs, or if they occur in multiple members of a species, shared VLFs. The amino acid and nucleotide VLFs are then compared to see if they are concordant with one another. Amino acid VLFs are also assessed to determine if they lead to a change in amino acid residue type, and potential changes to protein structures. Based on Stoeckle and Kerr (2012) <doi:10.1371/journal.pone.0043992> and Phillips et al. (2023) <doi:10.3897/BDJ.11.e96480>.
This package contains functions for a variational Bayesian method for sparse PCA proposed by Ning (2020) <arXiv:2102.00305>. There are two algorithms: the PX-CAVI algorithm (if assuming the loadings matrix is jointly row-sparse) and the batch PX-CAVI algorithm (if without this assumption). The outputs of the main function, VBsparsePCA(), include the mean and covariance of the loadings matrix, the score functions, the variable selection results, and the estimated variance of the random noise.
Functions, Classes & Methods for estimation, prediction, and simulation (bootstrap) of Variable Length Markov Chain ('VLMC') Models.
Generating functions for both optimal and ordinary difference sequences, and the difference-based estimation functions.
This package produces violin plots with optional nonparametric (Mann-Whitney test) and parametric (Tukey's honest significant difference) mean comparison and linear regression. This package aims to be a simple and quick visualization tool for comparing means and assessing trends of categorical factors.
This package provides R functions to draw lines and curves with the width of the curve allowed to vary along the length of the curve.
This package provides a programmatic interface in R for the US Department of Transportation (DOT) National Highway Transportation Safety Administration (NHTSA) vehicle identification number (VIN) API, located at <https://vpic.nhtsa.dot.gov/api/>. The API can decode up to 50 vehicle identification numbers in one call, and provides manufacturer information about the vehicles, including make, model, model year, and gross vehicle weight rating (GVWR).
This package provides functions for downloading, reshaping, culling, cleaning, and analyzing fossil data from the Paleobiology Database <https://paleobiodb.org>.
The base class VirtualArray is defined, which acts as a wrapper around lists allowing users to fold arbitrary sequential data into n-dimensional, R-style virtual arrays. The derived XArray class is defined to be used for homogeneous lists that contain a single class of objects. The RasterArray and SfArray classes enable the use of stacked spatial data instead of lists.
The Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model that solves full water and energy balances, originally developed by Xu Liang at the University of Washington (UW). The version of VIC source code used is of 5.0.1 on <https://github.com/UW-Hydro/VIC/>, see Hamman et al. (2018). Development and maintenance of the current official version of the VIC model at present is led by the UW Hydro (Computational Hydrology group) in the Department of Civil and Environmental Engineering at UW. VIC is a research model and in its various forms it has been applied to most of the major river basins around the world, as well as globally <http://vic.readthedocs.io/en/master/Documentation/References/>. References: "Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 14415-14428, <doi:10.1029/94JD00483>"; "Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y. (2018), The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility, Geosci. Model Dev., 11, 3481-3496, <doi:10.5194/gmd-11-3481-2018>".
Estimating the disparity between two groups based on the extended model of the Peters-Belson (PB) method. Our model is the first work on the longitudinal data, and also can set a varying variable to find the complicated association between other variables and the varying variable. Our work is an extension of the Peters-Belson method which was originally published in Peters (1941)<doi:10.1080/00220671.1941.10881036> and Belson (1956)<doi:10.2307/2985420>.
This package provides a Shiny application and functions for visual exploration of hierarchical clustering with numeric datasets. Allows users to iterative set hyperparameters, select features and evaluate results through various plots and computation of evaluation criteria.
Predicate helper functions for testing atomic vectors in R. All functions take a single argument x and check whether it's of the target type of base-R atomic vector (i.e. no class extensions nor attributes other than names'), returning TRUE or FALSE. Some additionally check for value (e.g. absence of missing values, infinities, blank characters, or names attribute; or having length 1).
Forecasting univariate time series with Variational Mode Decomposition (VMD) based time delay neural network models.For method details see Konstantin, D.and Dominique, Z. (2014). <doi:10.1109/TSP.2013.2288675>.