Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a novel method for interpreting new transcriptomic datasets through near-instantaneous comparison to public archives without high-performance computing requirements. Through the pre-computed index, users can identify public resources associated with their dataset such as gene sets, MeSH term, and publication. Functions to identify interpretable annotations and intuitive visualization options are implemented in this package.
This package provides access to BAM files generated from RNA-seq data produced with different levels of gDNA contamination. It currently allows one to download a subset of the data published by Li et al., BMC Genomics, 23:554, 2022. This subset of data is formed by BAM files with about 100,000 alignments with three different levels of gDNA contamination.
This is a R package to compute the automorphisms between pairwise aligned DNA sequences represented as elements from a Genomic Abelian group. In a general scenario, from genomic regions till the whole genomes from a given population (from any species or close related species) can be algebraically represented as a direct sum of cyclic groups or more specifically Abelian p-groups. Basically, we propose the representation of multiple sequence alignments of length N bp as element of a finite Abelian group created by the direct sum of homocyclic Abelian group of prime-power order.
Visualization of next generation sequencing (NGS) data is essential for interpreting high-throughput genomics experiment results. GenomicPlot facilitates plotting of NGS data in various formats (bam, bed, wig and bigwig); both coverage and enrichment over input can be computed and displayed with respect to genomic features (such as UTR, CDS, enhancer), and user defined genomic loci or regions. Statistical tests on signal intensity within user defined regions of interest can be performed and represented as boxplots or bar graphs. Parallel processing is used to speed up computation on multicore platforms. In addition to genomic plots which is suitable for displaying of coverage of genomic DNA (such as ChIPseq data), metagenomic (without introns) plots can also be made for RNAseq or CLIPseq data as well.
This package implements a metabolic network analysis pipeline to identify an active metabolic module based on high throughput data. The pipeline takes as input transcriptional and/or metabolic data and finds a metabolic subnetwork (module) most regulated between the two conditions of interest. The package further provides functions for module post-processing, annotation and visualization.
Pathway Expression Profiles (PEPs) are based on the expression of pathways (defined as sets of genes) as opposed to individual genes. This package converts gene expression profiles to PEPs and performs enrichment analysis of both pathways and experimental conditions, such as "drug set enrichment analysis" and "gene2drug" drug discovery analysis respectively.
GSALightning provides a fast implementation of permutation-based gene set analysis for two-sample problem. This package is particularly useful when testing simultaneously a large number of gene sets, or when a large number of permutations is necessary for more accurate p-values estimation.
gwasurvivr is a package to perform survival analysis using Cox proportional hazard models on imputed genetic data.
4way plots enable a comparison of the logFC values from two contrasts of differential gene expression. The gg4way package creates 4way plots using the ggplot2 framework and supports popular Bioconductor objects. The package also provides information about the correlation between contrasts and significant genes of interest.
Perform Mendelian randomization analysis of multiple SNPs to determine risk factors causing disease of study and to exclude confounding variabels and perform path analysis to construct path of risk factors to the disease.
This package provides functions and data used in Balasubramanian, et al. (2004).
GSCA takes as input several lists of activated and repressed genes. GSCA then searches through a compendium of publicly available gene expression profiles for biological contexts that are enriched with a specified pattern of gene expression. GSCA provides both traditional R functions and interactive, user-friendly user interface.
The method may be conceptualised as a test of overall significance in regression analysis, where the response variable is overdispersed and the number of explanatory variables exceeds the sample size. Useful for testing for association between RNA-Seq and high-dimensional data.
GA4GHclient provides an easy way to access public data servers through Global Alliance for Genomics and Health (GA4GH) genomics API. It provides low-level access to GA4GH API and translates response data into Bioconductor-based class objects.
Offers a set of autoplot methods to visualize tree-like structures (e.g., hierarchical clustering and classification/regression trees) using ggtree'. You can adjust graphical parameters using grammar of graphic syntax and integrate external data to the tree.
[GAprediction] predicts gestational age using Illumina HumanMethylation450 CpG data.
Models and methods for fitting linear models to gene expression data, together with tools for computing and using various regression diagnostics.
Genome-wide association studies (GWAS) is a widely used tool for identification of genetic variants associated with phenotypes and diseases, though complex diseases featuring many genetic variants with small effects present difficulties for traditional these studies. By leveraging pleiotropy, the statistical power of a single GWAS can be increased. This package provides functions for fitting graph-GPA, a statistical framework to prioritize GWAS results by integrating pleiotropy. GGPA package provides user-friendly interface to fit graph-GPA models, implement association mapping, and generate a phenotype graph.
Detect Differential Clustering of Genomic Sites such as gene therapy integrations. The package provides some functions for exploring genomic insertion sites originating from two different sources. Possibly, the two sources are two different gene therapy vectors. Vectors are preferred that target sensitive regions less frequently, motivating the search for localized clusters of insertions and comparison of the clusters formed by integration of different vectors. Scan statistics allow the discovery of spatial differences in clustering and calculation of False Discovery Rates (FDRs) providing statistical methods for comparing retroviral vectors. A scan statistic for comparing two vectors using multiple window widths to detect clustering differentials and compute FDRs is implemented here.
Single cell RNA-Seq data for 5902 cells from 18 patients with oral cavity head and neck squamous cell carcinoma available as GEO accession [GSE103322] (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322). GSE103322 data have been parsed into a SincleCellExperiment object available in ExperimentHub.
The package provides different distances measurements to calculate the difference between genesets. Based on these scores the genesets are clustered and visualized as graph. This is all presented in an interactive Shiny application for easy usage.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was HG-U133A\_probe\_tab.
This package is a parser to import HiC data into R. It accepts several type of data: tabular files, Cooler `.cool` or `.mcool` files, Juicer `.hic` files or HiC-Pro `.matrix` and `.bed` files. The HiC data can be several files, for several replicates and conditions. The data is formated in an InteractionSet object.
This package provides a package containing an environment representing the Hu35KsubB.CDF file.