Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Proof of concept for implementing grammar of graphics using base plot. The bbplot() function initializes a bbplot object to store input data, aesthetic mapping, a list of layers and theme elements. The object will be rendered as a graphic using base plot command if it is printed.
This package provides tools for performing disproportionality analysis using the information component, proportional reporting rate and the reporting odds ratio. The anticipated use is passing data to the da() function, which executes the disproportionality analysis. See Norén et al (2011) <doi:10.1177/0962280211403604> and Montastruc et al (2011) <doi:10.1111/j.1365-2125.2011.04037.x> for further details.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey 2014 Women (age 15-49 years) questionnaire data for Punjab, Pakistan.
This package provides a suite of empirical Bayes methods to use in pharmacovigilance. Contains various model fitting and post-processing functions. For more details see Tan et al. (2025) <doi:10.48550/arXiv.2502.09816>, Koenker and Mizera (2014) <doi:10.1080/01621459.2013.869224> and Efron (2016) <doi:10.1093/biomet/asv068>.
This package provides a collection of tools to handle microsatellite data of any ploidy (and samples of mixed ploidy) where allele copy number is not known in partially heterozygous genotypes. It can import and export data in ABI GeneMapper', Structure', ATetra', Tetrasat'/'Tetra', GenoDive', SPAGeDi', POPDIST', STRand', and binary presence/absence formats. It can calculate pairwise distances between individuals using a stepwise mutation model or infinite alleles model, with or without taking ploidies and allele frequencies into account. These distances can be used for the calculation of clonal diversity statistics or used for further analysis in R. Allelic diversity statistics and Polymorphic Information Content are also available. polysat can assist the user in estimating the ploidy of samples, and it can estimate allele frequencies in populations, calculate pairwise or global differentiation statistics based on those frequencies, and export allele frequencies to SPAGeDi and adegenet'. Functions are also included for assigning alleles to isoloci in cases where one pair of microsatellite primers amplifies alleles from two or more independently segregating isoloci. polysat is described by Clark and Jasieniuk (2011) <doi:10.1111/j.1755-0998.2011.02985.x> and Clark and Schreier (2017) <doi:10.1111/1755-0998.12639>.
Some functions at the intersection of dplyr and purrr that formerly lived in purrr'.
Data files and documentation for PEDiatric vALidation oF vAriableS in TBI (PEDALFAST). The data was used in "Functional Status Scale in Children With Traumatic Brain Injury: A Prospective Cohort Study" by Bennett, Dixon, et al (2016) <doi:10.1097/PCC.0000000000000934>.
This package provides a comprehensive collection of tools for creating, manipulating and visualising pedigrees and genetic marker data. Pedigrees can be read from text files or created on the fly with built-in functions. A range of utilities enable modifications like adding or removing individuals, breaking loops, and merging pedigrees. An online tool for creating pedigrees interactively, based on pedtools', is available at <https://magnusdv.shinyapps.io/quickped>. pedtools is the hub of the pedsuite', a collection of packages for pedigree analysis. A detailed presentation of the pedsuite is given in the book Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302).
We present a penalized log-density estimation method using Legendre polynomials with lasso penalty to adjust estimate's smoothness. Re-expressing the logarithm of the density estimator via a linear combination of Legendre polynomials, we can estimate parameters by maximizing the penalized log-likelihood function. Besides, we proposed an implementation strategy that builds on the coordinate decent algorithm, together with the Bayesian information criterion (BIC).
Simplifies the manufacturing, analysis and display of pressure volume and leaf drying curves. From the progression of the curves turgor loss point, osmotic potential, apoplastic fraction as well as minimum conductance and stomatal closure can be derived. Methods adapted from Bartlett, Scoffoni, Sack (2012) <doi:10.1111/j.1461-0248.2012.01751.x> and Sack, Scoffoni, PrometheusWikiContributors (2011) <http://prometheuswiki.org/tiki-index.php?page=Minimum+epidermal+conductance+%28gmin%2C+a.k.a.+cuticular+conductance%29>.
Quickly and easily add a mini map to your rmarkdown html documents.
Fast exponentiation when the exponent is an integer.
This package implements schemes for estimating player or team skill based on dynamic updating. Implemented methods include Elo, Glicko, Glicko-2 and Stephenson. Contains pdf documentation of a reproducible analysis using approximately two million chess matches. Also contains an Elo based method for multi-player games where the result is a placing or a score. This includes zero-sum games such as poker and mahjong.
This package provides a clustering approach applicable to every projection method is proposed here. The two-dimensional scatter plot of any projection method can construct a topographic map which displays unapparent data structures by using distance and density information of the data. The generalized U*-matrix renders this visualization in the form of a topographic map, which can be used to automatically define the clusters of high-dimensional data. The whole system is based on Thrun and Ultsch, "Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data" <DOI:10.1007/s00357-020-09373-2>. Selecting the correct projection method will result in a visualization in which mountains surround each cluster. The number of clusters can be determined by counting valleys on the topographic map. Most projection methods are wrappers for already available methods in R. By contrast, the neighbor retrieval visualizer (NeRV) is based on C++ source code of the dredviz software package, and the Curvilinear Component Analysis (CCA) is translated from MATLAB ('SOM Toolbox 2.0) to R.
Computing Average and TPX Power under various BHFDR type sequential procedures. All of these procedures involve control of some summary of the distribution of the FDP, e.g. the proportion of discoveries which are false in a given experiment. The most widely known of these, the BH-FDR procedure, controls the FDR which is the mean of the FDP. A lesser known procedure, due to Lehmann and Romano, controls the FDX, or probability that the FDP exceeds a user provided threshold. This is less conservative than FWE control procedures but much more conservative than the BH-FDR proceudre. This package and the references supporting it introduce a new procedure for controlling the FDX which we call the BH-FDX procedure. This procedure iteratively identifies, given alpha and lower threshold delta, an alpha* less than alpha at which BH-FDR guarantees FDX control. This uses asymptotic approximation and is only slightly more conservative than the BH-FDR procedure. Likewise, we can think of the power in multiple testing experiments in terms of a summary of the distribution of the True Positive Proportion (TPP), the portion of tests truly non-null distributed that are called significant. The package will compute power, sample size or any other missing parameter required for power defined as (i) the mean of the TPP (average power) or (ii) the probability that the TPP exceeds a given value, lambda, (TPX power) via asymptotic approximation. All supplied theoretical results are also obtainable via simulation. The suggested approach is to narrow in on a design via the theoretical approaches and then make final adjustments/verify the results by simulation. The theoretical results are described in Izmirlian, G (2020) Statistics and Probability letters, "<doi:10.1016/j.spl.2020.108713>", and an applied paper describing the methodology with a simulation study is in preparation. See citation("pwrFDR").
This package implements transformations of p-values to the smallest possible Bayes factor within the specified class of alternative hypotheses, as described in Held & Ott (2018, <doi:10.1146/annurev-statistics-031017-100307>). Covers several common testing scenarios such as z-tests, t-tests, likelihood ratio tests and the F-test.
This package provides functions that interface with the Pocket API (<https://getpocket.com/developer/>). Allows the user to get, add, and modify items in their own Pocket account.
This package provides a comprehensive implementation of Petersen-type estimators and its many variants for two-sample capture-recapture studies. A conditional likelihood approach is used that allows for tag loss; non reporting of tags; reward tags; categorical, geographical and temporal stratification; partial stratification; reverse capture-recapture; and continuous variables in modeling the probability of capture. Many examples from fisheries management are presented.
Implementation of T. Hailperin's procedure to calculate lower and upper bounds of the probability for a propositional-logic expression, given equality and inequality constraints on the probabilities for other expressions. Truth-valuation is included as a special case. Applications range from decision-making and probabilistic reasoning, to pedagogical for probability and logic courses. For more details see T. Hailperin (1965) <doi:10.1080/00029890.1965.11970533>, T. Hailperin (1996) "Sentential Probability Logic" ISBN:0-934223-45-9, and package documentation. Requires the lpSolve package.
This package provides a Shiny Web Application to predict and visualize concentrations of pharmaceuticals in the aqueous environment. Jagadeesan K., Barden R. and Kasprzyk-Hordern B. (2022) <https://www.ssrn.com/abstract=4306129>.
Power analysis and sample size determination for moderation, mediation, and moderated mediation in models fitted by structural equation modelling using the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02> or by multiple regression. The package manymome by Cheung and Cheung (2024) <doi:10.3758/s13428-023-02224-z> is used to specify the indirect paths or conditional indirect paths to be tested.
Propagation of uncertainty using higher-order Taylor expansion and Monte Carlo simulation. Calculations of propagated uncertainties are based on matrix calculus including covariance structure according to Arras 1998 <doi:10.3929/ethz-a-010113668> (first order), Wang & Iyer 2005 <doi:10.1088/0026-1394/42/5/011> (second order) and BIPM Supplement 1 (Monte Carlo) <doi:10.59161/JCGM101-2008>.
Spatial Analysis for exploration of Pakistan Population Census 2017 (<https://www.pbs.gov.pk/content/population-census>). It uses data from R package PakPC2017'.
This package infers the trends of one or several animal populations over time from series of counts. It does so by accounting for count precision (provided or inferred based on expert knowledge, e.g. guesstimates), smoothing the population rate of increase over time, and accounting for the maximum demographic potential of species. Inference is carried out in a Bayesian framework. This work is part of the FRB-CESAB working group AfroBioDrivers <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/afrobiodrivers/>.