Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create PostgreSQL statements/scripts from R, optionally executing the SQL statements. Common SQL operations are included, although not every configurable option is available at this time. SQL output is intended to be compliant with PostgreSQL syntax specifications. PostgreSQL documentation is available here <https://www.postgresql.org/docs/current/index.html>.
Fits the Piecewise Exponential distribution with random time grids using the clustering structure of the Product Partition Models. Details of the implemented model can be found in Demarqui et al. (2008) <doi:10.1007/s10985-008-9086-0>.
Design and implementation of Percentile-based Shewhart Control Charts for continuous data. Faraz (2019) <doi:10.1002/qre.2384>.
Estimation and inference of spatial and spatio-temporal semiparametric models including spatial or spatio-temporal non-parametric trends, parametric and non-parametric covariates and, possibly, a spatial lag for the dependent variable and temporal correlation in the noise. The spatio-temporal trend can be decomposed in ANOVA way including main and interaction functional terms. Use of SAP algorithm to estimate the spatial or spatio-temporal trend and non-parametric covariates. The methodology of these models can be found in next references Basile, R. et al. (2014), <doi:10.1016/j.jedc.2014.06.011>; Rodriguez-Alvarez, M.X. et al. (2015) <doi:10.1007/s11222-014-9464-2> and, particularly referred to the focus of the package, Minguez, R., Basile, R. and Durban, M. (2020) <doi:10.1007/s10260-019-00492-8>.
This package provides tools for calculating and viewing topological properties of phylogenetic trees.
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a limited number of components and regressing the criterion variables on these components (de Jong S. & Kiers H. A. L. (1992) <doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.
This package implements permutation tests for any test statistic and randomization scheme and constructs associated confidence intervals as described in Glazer and Stark (2024) <doi:10.48550/arXiv.2405.05238>.
This package provides randomization using permutation for applications. To provide a Quality Control (QC) check, QC samples can be randomized within strata. A second function allows for the ability to â switchâ samples to meet set requirements and perform a certain amount of minimization on these switches. The functions are flexible for users by specifying strata size and number of QC samples per strata. The randomization meets the following requirements â ¢ QC sample requirements: QC samples not adjacent, QC samples from same mother must follow certain patterns. â ¢ Matched sample sets must be within a single strata, and next to each other.
This package provides a central decision in a parametric regression is how to specify the relation between an dependent variable and each explanatory variable. This package provides a semi-parametric tool for comparing different transformations of an explanatory variables in a parametric regression. The functions is relevant in a situation, where you would use a box-cox or Box-Tidwell transformations. In contrast to the classic power-transformations, the methods in this package allows for theoretical driven user input and the possibility to compare with a non-parametric transformation.
Includes a collection of functions presented in "Measuring stability in ecological systems without static equilibria" by Clark et al. (2022) <doi:10.1002/ecs2.4328> in Ecosphere. These can be used to estimate the parameters of a stochastic state space model (i.e. a model where a time series is observed with error). The goal of this package is to estimate the variability around a deterministic process, both in terms of observation error - i.e. variability due to imperfect observations that does not influence system state - and in terms of process noise - i.e. stochastic variation in the actual state of the process. Unlike classical methods for estimating variability, this package does not necessarily assume that the deterministic state is fixed (i.e. a fixed-point equilibrium), meaning that variability around a dynamic trajectory can be estimated (e.g. stochastic fluctuations during predator-prey dynamics).
Create PX-files from scratch or read and modify existing ones. Includes a function for every PX keyword, making metadata manipulation simple and human-readable.
This package provides functions to setup a personal R package that attaches given libraries and exports personal helper functions.
This package implements the pcgen algorithm, which is a modified version of the standard pc-algorithm, with specific conditional independence tests and modified orientation rules. pcgen extends the approach of Valente et al. (2010) <doi:10.1534/genetics.109.112979> with reconstruction of direct genetic effects.
Pattern Sequence Based Forecasting (PSF) takes univariate time series data as input and assist to forecast its future values. This algorithm forecasts the behavior of time series based on similarity of pattern sequences. Initially, clustering is done with the labeling of samples from database. The labels associated with samples are then used for forecasting the future behaviour of time series data. The further technical details and references regarding PSF are discussed in Vignette.
This package implements methods to automate the Auer-Gervini graphical Bayesian approach for determining the number of significant principal components. Automation uses clustering, change points, or simple statistical models to distinguish "long" from "short" steps in a graph showing the posterior number of components as a function of a prior parameter. See <doi:10.1101/237883>.
This package performs genomic prediction of hybrid performance using eight statistical methods including GBLUP, BayesB, RKHS, PLS, LASSO, EN, LightGBM and XGBoost along with additive and additive-dominance models. Users are able to incorporate parental phenotypic information in all methods based on their specific needs. (Xu S et al(2017) <doi:10.1534/g3.116.038059>; Xu Y et al (2021) <doi: 10.1111/pbi.13458>).
This package creates a non-negative low-rank approximate factorization of a sparse counts matrix by maximizing Poisson likelihood with L1/L2 regularization (e.g. for implicit-feedback recommender systems or bag-of-words-based topic modeling) (Cortes, (2018) <arXiv:1811.01908>), which usually leads to very sparse user and item factors (over 90% zero-valued). Similar to hierarchical Poisson factorization (HPF), but follows an optimization-based approach with regularization instead of a hierarchical prior, and is fit through gradient-based methods instead of variational inference.
To assist you with troubleshooting internet connection issues and assist in isolating packet loss on your network. It does this by allowing you to retrieve the top trace route destinations your internet provider uses, and recursively ping each server in series while capturing the results and writing them to a log file. Each iteration it queries the destinations again, before shuffling the sequence of destinations to ensure the analysis is unbiased and consistent across each trace route.
Efficient algorithm for solving PU (Positive and Unlabeled) problem in low or high dimensional setting with lasso or group lasso penalty. The algorithm uses Maximization-Minorization and (block) coordinate descent. Sparse calculation and parallel computing are supported for the computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) <arXiv:1711.08129>.
Search CRAN metadata about packages by keyword, popularity, recent activity, package name and more. Uses the R-hub search server, see <https://r-pkg.org> and the CRAN metadata database, that contains information about CRAN packages. Note that this is _not_ a CRAN project.
This package provides a collection of functions to process digital images, depict greenness index trajectories and extract relevant phenological stages.
Data from All the World's Primates relational SQL database and other tabular datasets are made available via drivers and connection functions. Additionally we provide several functions and examples to facilitate the merging and aggregation of these tabular inputs.
This package provides a fast and flexible framework for agglomerative partitioning. partition uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. partition is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. partition is based on the Partition framework discussed in Millstein et al. (2020) <doi:10.1093/bioinformatics/btz661>.
Procedures for testing for group-wide signal in clusters of variables. Tests can be performed for single groups in isolation (univariate) or multiple groups together (multivariate). Specific tests include the exact and approximate (un)selective likelihood ratio tests described in Reid et al (2015), the selective F test and marginal screening prototype test of Reid and Tibshirani (2015). User may pre-specify columns to be included in prototype formation, or allow the function to select them itself. A mixture of these two is also possible. Any variable selection is accounted for using the selective inference framework. Options for non-sampling and hit-and-run null reference distributions.