Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extends the mlr3 ecosystem to functional analysis by adding support for irregular and regular functional data as defined in the tf package. The package provides PipeOps for preprocessing functional columns and for extracting scalar features, thereby allowing standard machine learning algorithms to be applied afterwards. Available operations include simple functional features such as the mean or maximum, smoothing, interpolation, flattening, and functional PCA'.
This package provides methods for detecting signals related to (adverse event, medical product e.g. drugs, vaccines) pairs, a data generation function for simulating pharmacovigilance datasets, and various utility functions. For more details please see Liu A., Mukhopadhyay R., and Markatou M. <doi:10.48550/arXiv.2410.01168>.
Visualise admixture as pie charts on a projected map, admixture as traditional structure barplots or facet barplots, and scatter plots from genotype principal components analysis. A shiny app allows users to create admixture maps interactively. Jenkins TL (2024) <doi:10.1111/1755-0998.13943>.
Causal moderated mediation analysis using the methods proposed by Qin and Wang (2023) <doi:10.3758/s13428-023-02095-4>. Causal moderated mediation analysis is crucial for investigating how, for whom, and where a treatment is effective by assessing the heterogeneity of mediation mechanism across individuals and contexts. This package enables researchers to estimate and test the conditional and moderated mediation effects, assess their sensitivity to unmeasured pre-treatment confounding, and visualize the results. The package is built based on the quasi-Bayesian Monte Carlo method, because it has relatively better performance at small sample sizes, and its running speed is the fastest. The package is applicable to a treatment of any scale, a binary or continuous mediator, a binary or continuous outcome, and one or more moderators of any scale.
Fast imputations under the object-oriented programming paradigm. Moreover there are offered a few functions built to work with popular R packages such as data.table or dplyr'. The biggest improvement in time performance could be achieve for a calculation where a grouping variable have to be used. A single evaluation of a quantitative model for the multiple imputations is another major enhancement. A new major improvement is one of the fastest predictive mean matching in the R world because of presorting and binary search.
Test for independence of two random vectors, learn and report the dependency structure. For more information, see Gorsky, Shai and Li Ma, Multiscale Fisher's Independence Test for Multivariate Dependence, Biometrika, accepted, January 2022.
This package provides methods of selecting one from many numeric predictors for a regression model, to ensure that the additional predictor has the maximum effect size.
Visualization of decision rules for binary classification and Receiver Operating Characteristic (ROC) curve estimation under different generalizations proposed in the literature: - making the classification subsets flexible to cover those scenarios where both extremes of the marker are associated with a higher risk of being positive, considering two thresholds (gROC() function); - transforming the marker by a proper function trying to improve the classification performance (hROC() function); - when dealing with multivariate markers, considering a proper transformation to univariate space trying to maximize the resulting AUC of the TPR for each FPR (multiROC() function). The classification regions behind each point of the ROC curve are displayed in both static graphics (plot_buildROC(), plot_regions() or plot_funregions() function) or videos (movieROC() function).
Relatively easy access is provided to 2023 version of the Maddison project data downloaded 2025-08-28. This project collates all the credible data on population and GDP for 169 countries, with some dating back to the year 1 of the current era. One function makes it easy to find the leaders for each year, allowing users to delete countries like OPEC with narrow economies to focus on technology leaders. Another function makes it easy to plot data for only selected countries or years. Another function makes it relatively easy to obtain references to the original sources, which must be cited per the copyright rules of the Maddison Project for different uses of their data.
This package provides a tidy workflow for landscape-scale analysis. multilandr offers tools to generate landscapes at multiple spatial scales and compute landscape metrics, primarily using the landscapemetrics package. It also features utility functions for plotting and analyzing multi-scale landscapes, exploring correlations between metrics, filtering landscapes based on specific conditions, generating landscape gradients for a given metric, and preparing datasets for further statistical analysis. Documentation about multilandr is provided in an introductory vignette included in this package and in the paper by Huais (2024) <doi:10.1007/s10980-024-01930-z>; see citation("multilandr") for details.
Makes a word cloud of text, sized by the frequency of the word, and colored either by user-specified colors or colored by the strength of the coefficient of that text derived from a regression model.
This package provides tools and demonstrates methods for working with individual undergraduate student-level records (registrar's data) in R'. Tools include filters for program codes, data sufficiency, and timely completion. Methods include gathering blocs of records, computing quantitative metrics such as graduation rate, and creating charts to visualize comparisons. midfieldr interacts with practice data provided in midfielddata', an R data package available at <https://midfieldr.github.io/midfielddata/>. midfieldr also interacts with the full MIDFIELD database for users who have access. This work is supported by the US National Science Foundation through grant numbers 1545667 and 2142087.
This package implements the algorithm of Remez (1962) for polynomial minimax approximation and of Cody et al. (1968) <doi:10.1007/BF02162506> for rational minimax approximation.
Calculation routines based on the FOCUS Kinetics Report (2006, 2014). Includes a function for conveniently defining differential equation models, model solution based on eigenvalues if possible or using numerical solvers. If a C compiler (on windows: Rtools') is installed, differential equation models are solved using automatically generated C functions. Non-constant errors can be taken into account using variance by variable or two-component error models <doi:10.3390/environments6120124>. Hierarchical degradation models can be fitted using nonlinear mixed-effects model packages as a back end <doi:10.3390/environments8080071>. Please note that no warranty is implied for correctness of results or fitness for a particular purpose.
The method m:Explorer associates a given list of target genes (e.g. those involved in a biological process) to gene regulators such as transcription factors. Transcription factors that bind DNA near significantly many target genes or correlate with target genes in transcriptional (microarray or RNAseq data) are selected. Selection of candidate master regulators is carried out using multinomial regression models, likelihood ratio tests and multiple testing correction. Reference: m:Explorer: multinomial regression models reveal positive and negative regulators of longevity in yeast quiescence. Juri Reimand, Anu Aun, Jaak Vilo, Juan M Vaquerizas, Juhan Sedman and Nicholas M Luscombe. Genome Biology (2012) 13:R55 <doi:10.1186/gb-2012-13-6-r55>.
Routines for assessing multivariate normality. Implements three Wald's type chi-squared tests; non-parametric Anderson-Darling and Cramer-von Mises tests; Doornik-Hansen test, Royston test and Henze-Zirkler test.
Uses the metadata information stored in metacore objects to check and build metadata associated columns.
User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-0>, "Meta-Analysis with R" (2015): - common effect and random effects meta-analysis; - several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble); - three-level meta-analysis model; - generalised linear mixed model; - logistic regression with penalised likelihood for rare events; - Hartung-Knapp method for random effects model; - Kenward-Roger method for random effects model; - prediction interval; - statistical tests for funnel plot asymmetry; - trim-and-fill method to evaluate bias in meta-analysis; - meta-regression; - cumulative meta-analysis and leave-one-out meta-analysis; - import data from RevMan 5'; - produce forest plot summarising several (subgroup) meta-analyses.
This package provides a system for Analysis of RBD when there is one missing observation. Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).
Collection of functions to compute within-study covariances for different effect sizes, data visualization, and single and multiple imputations for missing data. Effect sizes include correlation (r), mean difference (MD), standardized mean difference (SMD), log odds ratio (logOR), log risk ratio (logRR), and risk difference (RD).
In many agricultural, engineering, industrial, post-harvest and processing experiments, the number of factor level changes and hence the total number of changes is of serious concern as such experiments may consists of hard-to-change factors where it is physically very difficult to change levels of some factors or sometime such experiments may require normalization time to obtain adequate operating condition. For this reason, run orders that offer the minimum number of factor level changes and at the same time minimize the possible influence of systematic trend effects on the experimentation have been sought. Factorial designs with minimum changes in factors level may be preferred for such situations as these minimally changed run orders will minimize the cost of the experiments. For method details see, Bhowmik, A.,Varghese, E., Jaggi, S. and Varghese, C. (2017)<doi:10.1080/03610926.2016.1152490>.This package used to construct all possible minimally changed factorial run orders for different experimental set ups along with different statistical criteria to measure the performance of these designs. It consist of the function minFactDesign().
This package provides a simple in-memory, LRU cache that can be wrapped around any function to memoize it. The cache is keyed on a hash of the input data (using digest') or on pointer equivalence. Also includes a generic hashmap object that can key on any object type.
This package performs treatment assignment for (field) experiments considering available, possibly multivariate and continuous, information (covariates, observable characteristics), that is: forms balanced treatment groups, according to the minMSE-method as proposed by Schneider and Schlather (2017) <DOI:10419/161931>.
This package provides methods for fitting mixture distributions to univariate data using expectation maximization, HWHM and other methods. Supports Gaussian, Cauchy, Student's t and von Mises mixtures. For more details see Merkys (2018) <https://www.lvb.lt/permalink/370LABT_NETWORK/1m6ui06/alma9910036312108451>.