Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The nflverse is a set of packages dedicated to data of the National Football League. This package is designed to make it easy to install and load multiple nflverse packages in a single step. Learn more about the nflverse at <https://nflverse.nflverse.com/>.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Acquires and synthesizes soil carbon fluxes at sites located in the National Ecological Observatory Network (NEON). Provides flux estimates and associated uncertainty as well as key environmental measurements (soil water, temperature, CO2 concentration) that are used to compute soil fluxes.
Calculating the net reclassification improvement (NRI) for risk prediction models with time to event and binary data.
The Nordklim dataset 1.0 is a unique and useful achievement for climate analysis. It includes observations of twelve different climate elements from more than 100 stations in the Nordic region, in time span over 100 years. The project contractors were NORDKLIM/NORDMET on behalf of the National meteorological services in Denmark (DMI), Finland (FMI), Iceland (VI), Norway (DNMI) and Sweden (SMHI).
The aim of neo2R is to provide simple and low level connectors for querying neo4j graph databases (<https://neo4j.com/>). The objects returned by the query functions are either lists or data.frames with very few post-processing. It allows fast processing of queries returning many records. And it let the user handle post-processing according to the data model and his needs.
This package provides a tool for drawing sassy UML (Unified Modeling Language) diagrams based on a simple syntax, see <https://www.nomnoml.com>. Supports styling, R Markdown and exporting diagrams in the PNG format. Note: you need a chromium based browser installed on your system.
Dirichlet process mixture of multivariate normal, skew normal or skew t-distributions modeling oriented towards flow-cytometry data preprocessing applications. Method is detailed in: Hejblum, Alkhassimn, Gottardo, Caron & Thiebaut (2019) <doi: 10.1214/18-AOAS1209>.
Includes five particle filtering algorithms for use with state space models in the nimble system: Auxiliary', Bootstrap', Ensemble Kalman filter', Iterated Filtering 2', and Liu-West', as described in Michaud et al. (2021), <doi:10.18637/jss.v100.i03>. A full User Manual is available at <https://r-nimble.org>.
This package provides a model library for nlmixr2'. The models include (and plan to include) pharmacokinetic, pharmacodynamic, and disease models used in pharmacometrics. Where applicable, references for each model are included in the meta-data for each individual model. The package also includes model composition and modification functions to make model updates easier.
NEON data packages can be accessed through the NEON Data Portal <https://www.neonscience.org> or through the NEON Data API (see <https://data.neonscience.org/data-api> for documentation). Data delivered from the Data Portal are provided as monthly zip files packaged within a parent zip file, while individual files can be accessed from the API. This package provides tools that aid in discovering, downloading, and reformatting data prior to use in analyses. This includes downloading data via the API, merging data tables by type, and converting formats. For more information, see the readme file at <https://github.com/NEONScience/NEON-utilities>.
Neural decoding is method of analyzing neural data that uses a pattern classifiers to predict experimental conditions based on neural activity. NeuroDecodeR is a system of objects that makes it easy to run neural decoding analyses. For more information on neural decoding see Meyers & Kreiman (2011) <doi:10.7551/mitpress/8404.003.0024>.
Indices, heuristics, simulations and strategies to help determine the number of factors/components to retain in exploratory factor analysis and principal component analysis.
This package provides nearest-neighbors matching and analysis of case-control data. Cui, Z., Marder, E. P., Click, E. S., Hoekstra, R. M., & Bruce, B. B. (2022) <doi:10.1097/EDE.0000000000001504>.
Validate, format and compare identification numbers used in Brazil. These numbers are used to identify individuals (CPF), vehicles (RENAVAN), companies (CNPJ) and etc. Functions to format, validate and compare these numbers have been implemented in a vectorized way in order to speed up validations and comparisons in big datasets.
Models for non-linear time series analysis and causality detection. The main functionalities of this package consist of an implementation of the classical causality test (C.W.J.Granger 1980) <doi:10.1016/0165-1889(80)90069-X>, and a non-linear version of it based on feed-forward neural networks. This package contains also an implementation of the Transfer Entropy <doi:10.1103/PhysRevLett.85.461>, and the continuous Transfer Entropy using an approximation based on the k-nearest neighbors <doi:10.1103/PhysRevE.69.066138>. There are also some other useful tools, like the VARNN (Vector Auto-Regressive Neural Network) prediction model, the Augmented test of stationarity, and the discrete and continuous entropy and mutual information.
Semissupervised model for geographical document classification (Watanabe 2018) <doi:10.1080/21670811.2017.1293487>. This package currently contains seed dictionaries in English, German, French, Spanish, Italian, Russian, Hebrew, Arabic, Turkish, Japanese and Chinese (Simplified and Traditional).
This package provides functions to access and download data from various NASA APIs <https://api.nasa.gov/#browseAPI>, including: Astronomy Picture of the Day (APOD), Mars Rover Photos, Earth Polychromatic Imaging Camera (EPIC), Near Earth Object Web Service (NeoWs), Earth Observatory Natural Event Tracker (EONET), and NASA Earthdata CMR Search. Most endpoints require a NASA API key for access. Data is retrieved, cleaned for analysis, and returned in a dataframe-friendly format.
Computes various geospatial indices of socioeconomic deprivation and disparity in the United States. Some indices are considered "spatial" because they consider the values of neighboring (i.e., adjacent) census geographies in their computation, while other indices are "aspatial" because they only consider the value within each census geography. Two types of aspatial neighborhood deprivation indices (NDI) are available: including: (1) based on Messer et al. (2006) <doi:10.1007/s11524-006-9094-x> and (2) based on Andrews et al. (2020) <doi:10.1080/17445647.2020.1750066> and Slotman et al. (2022) <doi:10.1016/j.dib.2022.108002> who use variables chosen by Roux and Mair (2010) <doi:10.1111/j.1749-6632.2009.05333.x>. Both are a decomposition of multiple demographic characteristics from the U.S. Census Bureau American Community Survey 5-year estimates (ACS-5; 2006-2010 onward). Using data from the ACS-5 (2005-2009 onward), the package can also compute indices of racial or ethnic residential segregation, including but limited to those discussed in Massey & Denton (1988) <doi:10.1093/sf/67.2.281>, and additional indices of socioeconomic disparity.
This package performs combination tests and sample size calculation for fixed design with survival endpoints using combination tests under either proportional hazards or non-proportional hazards. The combination tests include maximum weighted log-rank test and projection test. The sample size calculation procedure is very flexible, allowing for user-defined hazard ratio function and considering various trial conditions like staggered entry, drop-out etc. The sample size calculation also applies to various cure models such as proportional hazards cure model, cure model with (random) delayed treatments effects. Trial simulation function is also provided to facilitate the empirical power calculation. The references for projection test and maximum weighted logrank test include Brendel et al. (2014) <doi:10.1111/sjos.12059> and Cheng and He (2021) <arXiv:2110.03833>. The references for sample size calculation under proportional hazard include Schoenfeld (1981) <doi:10.1093/biomet/68.1.316> and Freedman (1982) <doi:10.1002/sim.4780010204>. The references for calculation under non-proportional hazards include Lakatos (1988) <doi:10.2307/2531910> and Cheng and He (2023) <doi:10.1002/bimj.202100403>.
Lite interface for getting data from OSM service Nominatim <https://nominatim.org/release-docs/latest/>. Extract coordinates from addresses, find places near a set of coordinates and return spatial objects on sf format.
Represent network or igraph objects whose vertices can be represented by features in an sf object as a network graph surmising a sf plot. Fits into ggplot2 grammar.
Calculates network measures commonly used in Network Medicine. Measures such as the Largest Connected Component, the Relative Largest Connected Component, Proximity and Separation are calculated along with their statistical significance. Significance can be computed both using a degree-preserving randomization and non-degree preserving.
This data package contains the Item Response Theory (IRT) parameters for the National Center for Education Statistics (NCES) items used on the National Assessment of Education Progress (NAEP) from 1990 to 2015. The values in these tables are used along with NAEP data to turn student item responses into scores and include information about item difficulty, discrimination, and guessing parameter for 3 parameter logit (3PL) items. Parameters for Generalized Partial Credit Model (GPCM) items are also included. The adjustments table contains the information regarding the treatment of items (e.g., deletion of an item or a collapsing of response categories), when these items did not appear to fit the item response models used to describe the NAEP data. Transformation constants change the score estimates that are obtained from the IRT scaling program to the NAEP reporting metric. Values from the years 2000 - 2013 were taken from the NCES website <https://nces.ed.gov/nationsreportcard/> and values from 1990 - 1998 and 2015 were extracted from their NAEP data files. All subtest names were reduced and homogenized to one word (e.g. "Reading to gain information" became "information"). The various subtest names for univariate transformation constants were all homogenized to "univariate".