Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of various statistical models for multivariate event history data <doi:10.1007/s10985-013-9244-x>. Including multivariate cumulative incidence models <doi:10.1002/sim.6016>, and bivariate random effects probit models (Liability models) <doi:10.1016/j.csda.2015.01.014>. Modern methods for survival analysis, including regression modelling (Cox, Fine-Gray, Ghosh-Lin, Binomial regression) with fast computation of influence functions.
Estimates exponential-family random graph models for multilevel network data, assuming the multilevel structure is observed. The scope, at present, covers multilevel models where the set of nodes is nested within known blocks. The estimation method uses Monte-Carlo maximum likelihood estimation (MCMLE) methods to estimate a variety of canonical or curved exponential family models for binary random graphs. MCMLE methods for curved exponential-family random graph models can be found in Hunter and Handcock (JCGS, 2006). The package supports parallel computing, and provides methods for assessing goodness-of-fit of models and visualization of networks.
This package provides a framework to perform soft clustering using simplex-structured matrix factorisation (SSMF). The package contains a set of functions for determining the optimal number of prototypes, the optimal algorithmic parameters, the estimation confidence intervals and the diversity of clusters. Abdolali, Maryam & Gillis, Nicolas (2020) <doi:10.1137/20M1354982>.
Handy helper package for cross-referencing lake identifiers among different data sets in the Midwestern United States. There are multiple different state, regional, and federal agencies that have different identifiers on lakes. This package helps you to go between them.
Offers automation tools to parallelize Mplus operations when using R for data generation. It facilitates streamlined integration between Mplus and R', allowing users to run and manage multiple Mplus models simultaneously and efficiently in R'.
Fits and tests meta regression models and generates a number of useful test statistics: next to t- and z-tests, the likelihood ratio, bartlett corrected likelihood ratio and permutation tests are performed on the model coefficients.
This package provides a graphical user interface (GUI) for performing Multidimensional Scaling applications and interactively analysing the results all within the GUI environment. The MDS-GUI provides means of performing Classical Scaling, Least Squares Scaling, Metric SMACOF, Non-Metric SMACOF, Kruskal's Analysis and Sammon Mapping with animated optimisation.
Climate-sensitive, single-tree forest simulator based on data-driven machine learning. It simulates the main forest processesâ radial growth, height growth, mortality, crown recession, regeneration, and harvestingâ so users can assess stand development under climate and management scenarios. The height model is described by Skudnik and JevÅ¡enak (2022) <doi:10.1016/j.foreco.2022.120017>, the basal-area increment model by JevÅ¡enak and Skudnik (2021) <doi:10.1016/j.foreco.2020.118601>, and an overview of the MLFS package, workflow, and applications is provided by JevÅ¡enak, ArniÄ , Krajnc, and Skudnik (2023), Ecological Informatics <doi:10.1016/j.ecoinf.2023.102115>.
This package provides functions to interpolate irregularly and regularly spaced data using Multilevel B-spline Approximation (MBA). Functions call portions of the SINTEF Multilevel B-spline Library written by à yvind Hjelle which implements methods developed by Lee, Wolberg and Shin (1997; <doi:10.1109/2945.620490>).
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d data. A bootstrap restarting iterative segmented quantile algorithm is proposed to estimate the multiple kink quantile regression model conditional on a given number of change points. The number of kinks is also allowed to be unknown. In such case, the backward elimination algorithm and the bootstrap restarting iterative segmented quantile algorithm are combined to select the number of change points based on a quantile BIC. For longitudinal data, we also develop the GEE estimator to incorporate the within-subject correlations. A score-type based test statistic is also developed for testing the existence of kink effect. The package is based on the paper, ``Wei Zhong, Chuang Wan and Wenyang Zhang (2022). Estimation and inference for multikink quantile regression, JBES and ``Chuang Wan, Wei Zhong, Wenyang Zhang and Changliang Zou (2022). Multi-kink quantile regression for longitudinal data with application to progesterone data analysis, Biometrics".
This package provides functions provide comprehensive treatments for estimating, inferring, testing and model selecting in linear regression models with structural breaks. The tests, estimation methods, inference and information criteria implemented are discussed in Bai and Perron (1998) "Estimating and Testing Linear Models with Multiple Structural Changes" <doi:10.2307/2998540>.
This package provides a GUI with which users can construct and interact with Multibiplot Analysis.
This package provides a toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.
This package provides flexible dictionary-based cleaning that allows users to specify implicit and explicit missing data, regular expressions for both data and columns, and global matches, while respecting ordering of factors. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis.
This package provides functions for row-reducing and inverting matrices with entries in many of the finite fields (those with a prime number of elements). With this package, users will be able to find the reduced row echelon form (RREF) of a matrix and calculate the inverse of a (square, invertible) matrix.
Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. metagam provides functionality for removing individual participant data from models computed using the mgcv and gamm4 packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <doi:10.1016/j.neuroimage.2020.117416>, extending previous works by Schwartz and Zanobetti (2000) and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.
Estimates models that extend the standard GLM to take misclassification into account. The models require side information from a secondary data set on the misclassification process, i.e. some sort of misclassification probabilities conditional on some common covariates. A detailed description of the algorithm can be found in Dlugosz, Mammen and Wilke (2015) <https://ftp.zew.de/pub/zew-docs/dp/dp15043.pdf>.
The unique function of this package allows representing in a single graph the relative occurrence and co-occurrence of events measured in a sample. As examples, the package was applied to describe the occurrence and co-occurrence of different species of bacterial or viral symbionts infecting arthropods at the individual level. The graphics allows determining the prevalence of each symbiont and the patterns of multiple infections (i.e. how different symbionts share or not the same individual hosts). We named the package after the famous painter as the graphical output recalls Mondrianâ s paintings.
Shiny web application to run meta-analyses. Essentially a graphical front-end to package meta for R. Can be useful as an educational tool, and for quickly analyzing and sharing meta-analyses. Provides output to quickly fill in GRADE (Grading of Recommendations, Assessment, Development and Evaluations) Summary-of-Findings tables. Importantly, it allows further processing of the results inside R, in case more specific analyses are needed.
This package provides functions and tools for analysing consumer demand with the Almost Ideal Demand System (AIDS) suggested by Deaton and Muellbauer (1980).
Extreme value analysis with the metastatistical extreme value distribution MEVD (Marani and Ignaccolo, 2015, <doi:10.1016/j.advwatres.2015.03.001>) and some of its variants. In particular, analysis can be performed with the simplified metastatistical extreme value distribution SMEV (Marra et al., 2019, <doi:10.1016/j.advwatres.2019.04.002>) and the temporal metastatistical extreme value distribution TMEV (Falkensteiner et al., 2023, <doi:10.1016/j.wace.2023.100601>). Parameters can be estimated with probability weighted moments, maximum likelihood and least squares. The data can also be left-censored prior to a fit. Density, distribution function, quantile function and random generation for the MEVD, SMEV and TMEV are included. In addition, functions for the calculation of return levels including confidence intervals are provided. For a description of use cases please see the provided references.
This package provides a minimal, light-weight set of tools for producing nice looking maps in R, with support for map projections. See Brown (2016) <doi:10.32614/RJ-2016-005>.
The word Meme was originated from the book, The Selfish Gene', authored by Richard Dawkins (1976). It is a unit of culture that is passed from one generation to another and correlates to the gene, the unit of physical heredity. The internet memes are captioned photos that are intended to be funny, ridiculous. Memes behave like infectious viruses and travel from person to person quickly through social media. The meme package allows users to make custom memes.
Compute and select tuning parameters for the MRCE estimator proposed by Rothman, Levina, and Zhu (2010) <doi:10.1198/jcgs.2010.09188>. This estimator fits the multiple output linear regression model with a sparse estimator of the error precision matrix and a sparse estimator of the regression coefficient matrix.