Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit right censored Multiple Ordinal Tobit (MOT) model.
Linear dimension reduction subspaces can be uniquely defined using orthogonal projection matrices. This package provides tools to compute distances between such subspaces and to compute the average subspace. For details see Liski, E.Nordhausen K., Oja H., Ruiz-Gazen A. (2016) Combining Linear Dimension Reduction Subspaces <doi:10.1007/978-81-322-3643-6_7>.
In the generalized Roy model, the marginal treatment effect (MTE) can be used as a building block for constructing conventional causal parameters such as the average treatment effect (ATE) and the average treatment effect on the treated (ATT). Given a treatment selection equation and an outcome equation, the function mte() estimates the MTE via the semiparametric local instrumental variables method or the normal selection model. The function mte_at() evaluates MTE at different values of the latent resistance u with a given X = x, and the function mte_tilde_at() evaluates MTE projected onto the estimated propensity score. The function ace() estimates population-level average causal effects such as ATE, ATT, or the marginal policy relevant treatment effect.
Imports a data frame containing a single time resolved laser ablation mass spectrometry analysis of a foraminifera (or other carbonate shell), then detects when the laser has burnt through the foraminifera test as a function of change in signal over time.
We developed an approach to detect differential expression features in long non-coding RNA low counts, using generalized linear model with zero-inflated exponential quasi likelihood ratio test. Methods implemented in this package are described in Li (2019) <doi:10.1186/s12864-019-5926-4>.
Computes the Lomb-Scargle Periodogram and actogram for evenly or unevenly sampled time series. Includes a randomization procedure to obtain exact p-values. Partially based on C original by Press et al. (Numerical Recipes) and the Python module Astropy. For more information see Ruf, T. (1999). The Lomb-Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biological Rhythm Research, 30(2), 178-201.
This package provides methods for fitting log-link GLMs and GAMs to binomial data, including EM-type algorithms with more stable convergence properties than standard methods.
Simulation and estimation of univariate and multivariate log-GARCH models. The main functions of the package are: lgarchSim(), mlgarchSim(), lgarch() and mlgarch(). The first two functions simulate from a univariate and a multivariate log-GARCH model, respectively, whereas the latter two estimate a univariate and multivariate log-GARCH model, respectively.
This package provides a very simple implementation of a class for longitudinal data.
Various algorithms related to linguistic fuzzy logic: mining for linguistic fuzzy association rules, composition of fuzzy relations, performing perception-based logical deduction (PbLD), and forecasting time-series using fuzzy rule-based ensemble (FRBE). The package also contains basic fuzzy-related algebraic functions capable of handling missing values in different styles (Bochvar, Sobocinski, Kleene etc.), computation of Sugeno integrals and fuzzy transform.
Affords an alternative, vector-based syntax to lavaan', as well as other convenience functions such as naming paths and defining indirect links automatically, in addition to convenience formatting optimized for a publication and script sharing workflow.
Set of tools for analyzing lactate thresholds from a step incremental test to exhaustion. Easily analyze the methods Log-log, Onset of Blood Lactate Accumulation (OBLA), Baseline plus (Bsln+), Dmax, Lactate Turning Point (LTP), and Lactate / Intensity ratio (LTratio) in cycling, running, or swimming. Beaver WL, Wasserman K, Whipp BJ (1985) <doi:10.1152/jappl.1985.59.6.1936>. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985) <doi:10.1055/s-2008-1025824>. Kindermann W, Simon G, Keul J (1979) <doi:10.1007/BF00421101>. Skinner JS, Mclellan TH (1980) <doi:10.1080/02701367.1980.10609285>. Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, Keul J (1990) PMID 2408033. Zoladz JA, Rademaker AC, Sargeant AJ (1995) <doi:10.1113/jphysiol.1995.sp020959>. Cheng B, Kuipers H, Snyder A, Keizer H, Jeukendrup A, Hesselink M (1992) <doi:10.1055/s-2007-1021309>. Bishop D, Jenkins DG, Mackinnon LT (1998) <doi:10.1097/00005768-199808000-00014>. Hughson RL, Weisiger KH, Swanson GD (1987) <doi:10.1152/jappl.1987.62.5.1975>. Jamnick NA, Botella J, Pyne DB, Bishop DJ (2018) <doi:10.1371/journal.pone.0199794>. Hofmann P, Tschakert G (2017) <doi:10.3389/fphys.2017.00337>. Hofmann P, Pokan R, von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) <doi:10.1097/00005768-199706000-00005>. Pokan R, Hofmann P, Von Duvillard SP, et al. (1997) <doi:10.1097/00005768-199708000-00009>. Dickhuth H-H, Yin L, Niess A, et al. (1999) <doi:10.1055/s-2007-971105>.
An implementation of list comprehensions as purely syntactic sugar with a minor runtime overhead. It constructs nested for-loops and executes the byte-compiled loops to collect the results.
L1 estimation for linear regression using Barrodale and Roberts method <doi:10.1145/355616.361024> and the EM algorithm <doi:10.1023/A:1020759012226>. Estimation of mean and covariance matrix using the multivariate Laplace distribution, density, distribution function, quantile function and random number generation for univariate and multivariate Laplace distribution <doi:10.1080/03610929808832115>. Implementation of Naik and Plungpongpun <doi:10.1007/0-8176-4487-3_7> for the Generalized spatial median estimator is included.
Software for computing a log-concave (maximum likelihood) estimator for independent and identically distributed data in any number of dimensions. For a detailed description of the method see Cule, Samworth and Stewart (2010, Journal of Royal Statistical Society Series B, <doi:10.1111/j.1467-9868.2010.00753.x>).
Create lipidome-wide heatmaps of statistics with the lipidomeR'. The lipidomeR provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the lipidomeR helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.
This package provides a collection of colour palettes inspired by some of our dearest butterfly species. This package provides continuous and categorical palettes, including some colour blind friendly options.
Prototypes for construction of a Gaussian Stochastic Process emulator (GASP) of a computer model. This is done within the objective Bayesian implementation of the GASP. The package allows for construction of a linked GASP of the composite computer model. Computational implementation follows the mathematical exposition given in publication: Ksenia N. Kyzyurova, James O. Berger, Robert L. Wolpert. Coupling computer models through linking their statistical emulators. SIAM/ASA Journal on Uncertainty Quantification, 6(3): 1151-1171, (2018).<DOI:10.1137/17M1157702>.
Latent Class Analysis of phenotypic measurements in pedigrees and model selection based on one of two methods: likelihood-based cross-validation and Bayesian Information Criterion. Computation of individual and triplet child-parents weights in a pedigree is performed using an upward-downward algorithm. The model takes into account the familial dependence defined by the pedigree structure by considering that a class of a child depends on his parents classes via triplet-transition probabilities of the classes. The package handles the case where measurements are available on all subjects and the case where measurements are available only on symptomatic (i.e. affected) subjects. Distributions for discrete (or ordinal) and continuous data are currently implemented. The package can deal with missing data.
This package provides a suite of tools to use the eBird database (<https://ebird.org/home/>) and APIs to compare users species lists to recent observations and create a report of the top sites to visit to see new species.
Bayesian population size estimation using non parametric latent-class models.
This package performs power and sample size calculation for non-proportional hazards model using the Fleming-Harrington family of weighted log-rank tests. The sequentially calculated log-rank test score statistics are assumed to have independent increments as characterized in Anastasios A. Tsiatis (1982) <doi:10.1080/01621459.1982.10477898>. The mean and variance of log-rank test score statistics are calculated based on Kaifeng Lu (2021) <doi:10.1002/pst.2069>. The boundary crossing probabilities are calculated using the recursive integration algorithm described in Christopher Jennison and Bruce W. Turnbull (2000, ISBN:0849303168). The package can also be used for continuous, binary, and count data. For continuous data, it can handle missing data through mixed-model for repeated measures (MMRM). In crossover designs, it can estimate direct treatment effects while accounting for carryover effects. For binary data, it can design Simon's 2-stage, modified toxicity probability-2 (mTPI-2), and Bayesian optimal interval (BOIN) trials. For count data, it can design group sequential trials for negative binomial endpoints with censoring. Additionally, it facilitates group sequential equivalence trials for all supported data types. Moreover, it can design adaptive group sequential trials for changes in sample size, error spending function, number and spacing or future looks. Finally, it offers various options for adjusted p-values, including graphical and gatekeeping procedures.
This package provides a collection of helper functions and illustrative datasets to support learning and teaching of data science with R. The package is designed as a companion to the book <https://book-data-science-r.netlify.app>, making key data science techniques accessible to individuals with minimal coding experience. Functions include tools for data partitioning, performance evaluation, and data transformations (e.g., z-score and min-max scaling). The included datasets are curated to highlight practical applications in data exploration, modeling, and multivariate analysis. An early inspiration for the package came from an ancient Persian idiom about "eating the liveR," symbolizing deep and immersive engagement with knowledge.
This package performs adjusted inferences based on model objects fitted, using maximum likelihood estimation, by the extreme value analysis packages eva <https://cran.r-project.org/package=eva>, evd <https://cran.r-project.org/package=evd>, evir <https://cran.r-project.org/package=evir>, extRemes <https://cran.r-project.org/package=extRemes>, fExtremes <https://cran.r-project.org/package=fExtremes>, ismev <https://cran.r-project.org/package=ismev>, mev <https://cran.r-project.org/package=mev>, POT <https://cran.r-project.org/package=POT> and texmex <https://cran.r-project.org/package=texmex>. Adjusted standard errors and an adjusted loglikelihood are provided, using the chandwich package <https://cran.r-project.org/package=chandwich> and the object-oriented features of the sandwich package <https://cran.r-project.org/package=sandwich>. The adjustment is based on a robust sandwich estimator of the parameter covariance matrix, based on the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>. This can be used for cluster correlated data when interest lies in the parameters of the marginal distributions, or for performing inferences that are robust to certain types of model misspecification. Univariate extreme value models, including regression models, are supported.