Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates pre- and post- intervention scattergrams based on audiometric data. These scattergrams are formatted for publication in Otology & Neurotology and other otolaryngology journals. For more details, see Gurgel et al (2012) <doi:10.1177/0194599812458401>, Oghalai and Jackler (2016) <doi:10.1177/0194599816638314>.
Spatial modeling of energy balance and actual evapotranspiration using satellite images and meteorological data. Options of satellite are: Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS. Respectively spatial resolutions are 30, 100, 10 and 250 meters. User can use data from a single meteorological station or a grid of meteorological stations (using any spatial interpolation method). Silva, Teixeira, and Manzione (2019) <doi:10.1016/j.envsoft.2019.104497>.
This package implements binomial tree pricing for geometric and arithmetic Asian options incorporating market price impact from hedging activities. Uses the Cox-Ross-Rubinstein (CRR) model with the replicating portfolio method. Provides exact pricing for geometric Asian options and bounds for arithmetic Asian options based on Jensen's inequality. The price impact mechanism models how hedging volumes affect stock prices, leading to modified risk-neutral probabilities. Based on the methodology described in Tiwari and Majumdar (2025) <doi:10.48550/arXiv.2512.07154>.
Multi-category angle-based large-margin classifiers. See Zhang and Liu (2014) <doi:10.1093/biomet/asu017> for details.
Collect your data on digital marketing campaigns from Amazon Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Automatically selects and runs the most appropriate statistical test for your data, returning clear, easy-to-read results. Ideal for all experience levels.
This package implements the Arellano-Bond estimation method combined with LASSO for dynamic linear panel models. See Chernozhukov et al. (2024) "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models". arXiv preprint <doi:10.48550/arXiv.2402.00584>.
This package provides a cross-platform R framework that facilitates processing of any number of Affymetrix microarray samples regardless of computer system. The only parameter that limits the number of chips that can be processed is the amount of available disk space. The Aroma Framework has successfully been used in studies to process tens of thousands of arrays. This package has actively been used since 2006.
Airport problems, introduced by Littlechild and Owen (1973) <https://www.jstor.org/stable/2629727>, are cost allocation problems where agents share the cost of a facility (or service) based on their ordered needs. Valid allocations must satisfy no-subsidy constraints, meaning that no group of agents contributes more than the highest cost of its members (i.e., no agent is allowed to subsidize another). A rule is a mechanism that selects an allocation vector for a given problem. This package computes several rules proposed in the literature, including both standard rules and their variants, such as weighted versions, rules for clones, and rules based on the agentsâ hierarchy order. These rules can be applied to various problems of interest, including the allocation of liabilities and the maintenance of irrigation systems, among others. Moreover, the package provides functions for graphical representation, enabling users to visually compare the outcomes produced by each rule, or to display the no-subsidy set. In addition, it includes four datasets illustrating different applications and examples of airport problems. For a more detailed explanation of all concepts, see Thomson (2024) <doi:10.1016/j.mathsocsci.2024.03.007>.
For researchers to quickly and comprehensively acquire disease genes, so as to understand the mechanism of disease, we developed this program to acquire disease-related genes. The data is integrated from three public databases. The three databases are eDGAR', DrugBank and MalaCards'. The eDGAR is a comprehensive database, containing data on the relationship between disease and genes. DrugBank contains information on 13443 drugs and 5157 targets. MalaCards integrates human disease information, including disease-related genes.
Provides: (1) Tools to infer dominance hierarchies based on calculating Elo scores, but with custom functions to improve estimates in animals with relatively stable dominance ranks. (2) Tools to plot the shape of the dominance hierarchy and estimate the uncertainty of a given data set.
This package provides a toolkit to predict antimicrobial peptides from protein sequences on a genome-wide scale. It incorporates two support vector machine models ("precursor" and "mature") trained on publicly available antimicrobial peptide data using calculated physico-chemical and compositional sequence properties described in Meher et al. (2017) <doi:10.1038/srep42362>. In order to support genome-wide analyses, these models are designed to accept any type of protein as input and calculation of compositional properties has been optimised for high-throughput use. For best results it is important to select the model that accurately represents your sequence type: for full length proteins, it is recommended to use the default "precursor" model. The alternative, "mature", model is best suited for mature peptide sequences that represent the final antimicrobial peptide sequence after post-translational processing. For details see Fingerhut et al. (2020) <doi:10.1093/bioinformatics/btaa653>. The ampir package is also available via a Shiny based GUI at <https://ampir.marine-omics.net/>.
Client package for the AWS Key Management Service <https://aws.amazon.com/kms/>, a cloud service for managing encryption keys.
This package provides a novel parametrization of log transformation and a shift parameter to automate the transformation process are proposed in R package AutoTransQF based on Feng et al. (2016). Please read Feng et al. (2016) <doi:10.1002/sta4.104> for more details of the method.
Randomly splits data into testing and training sets. Then, uses stepwise selection to fit numerous multiple regression models on the training data, and tests them on the test data. Returned for each model are plots comparing model Akaike Information Criterion (AIC), Pearson correlation coefficient (r) between the predicted and actual values, Mean Absolute Error (MAE), and R-Squared among the models. Each model is ranked relative to the other models by the model evaluation metrics (i.e., AIC, r, MAE, and R-Squared) and the model with the best mean ranking among the model evaluation metrics is returned. Model evaluation metric weights for AIC, r, MAE, and R-Squared are taken in as arguments as aic_wt, r_wt, mae_wt, and r_squ_wt, respectively. They are equally weighted as default but may be adjusted relative to each other if the user prefers one or more metrics to the others, Field, A. (2013, ISBN:978-1-4462-4918-5).
An interface to the table storage service in Azure': <https://azure.microsoft.com/en-us/services/storage/tables/>. Supplies functionality for reading and writing data stored in tables, both as part of a storage account and from a CosmosDB database with the table service API. Part of the AzureR family of packages.
This package provides a tool to analyse ActiGraph accelerometer data and to implement the use of the PROactive Physical Activity in COPD (chronic obstructive pulmonary disease) instruments. Once analysis is completed, the app allows to export results to .csv files and to generate a report of the measurement. All the configured inputs relevant for interpreting the results are recorded in the report. In addition to the existing R packages that are fully integrated with the app, the app uses some functions from the actigraph.sleepr package developed by Petkova (2021) <https://github.com/dipetkov/actigraph.sleepr/>.
Developed for use by those tasked with the routine detection, characterisation and quantification of discrete changes in air quality time-series, such as identifying the impacts of air quality policy interventions. The main functions use signal isolation then break-point/segment (BP/S) methods based on strucchange and segmented methods to detect and quantify change events (Ropkins & Tate, 2021, <doi:10.1016/j.scitotenv.2020.142374>).
The centralized empirical cumulative average deviation function is utilized to develop both Ada-plot and Uda-plot as alternatives to Ad-plot and Ud-plot introduced by the author. Analogous to Ad-plot, Ada-plot can identify symmetry, skewness, and outliers of the data distribution. The Uda-plot is as exceptional as Ud-plot in assessing normality. The d-value that quantifies the degree of proximity between the Uda-plot and the graph of the estimated normal density function helps guide to make decisions on confirmation of normality. Extreme values in the data can be eliminated using the 1.5IQR rule to create its robust version if user demands. Full description of the methodology can be found in the article by Wijesuriya (2025a) <doi:10.1080/03610926.2025.2558108>. Further, the development of Ad-plot and Ud-plot is contained in both article and the adplots R package by Wijesuriya (2025b & 2025c) <doi:10.1080/03610926.2024.2440583> and <doi:10.32614/CRAN.package.adplots>.
This package implements persistent row and column annotations for R matrices. The annotations associated with rows and columns are preserved after subsetting, transposition, and various other matrix-specific operations. Intended use case is for storing and manipulating genomic datasets which typically consist of a matrix of measurements (like gene expression values) as well as annotations about rows (i.e. genomic locations) and annotations about columns (i.e. meta-data about collected samples). But annmatrix objects are also expected to be useful in various other contexts.
Animate Shiny and R Markdown content when it comes into view using animate-css effects thanks to jQuery AniView'.
The actfts package provides tools for performing autocorrelation analysis of time series data. It includes functions to compute and visualize the autocorrelation function (ACF) and the partial autocorrelation function (PACF). Additionally, it performs the Dickey-Fuller, KPSS, and Phillips-Perron unit root tests to assess the stationarity of time series. Theoretical foundations are based on Box and Cox (1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Box and Jenkins (1976) <isbn:978-0-8162-1234-2>, and Box and Pierce (1970) <doi:10.1080/01621459.1970.10481180>. Statistical methods are also drawn from Kolmogorov (1933) <doi:10.1007/BF00993594>, Kwiatkowski et al. (1992) <doi:10.1016/0304-4076(92)90104-Y>, and Ljung and Box (1978) <doi:10.1093/biomet/65.2.297>. The package integrates functions from forecast (Hyndman & Khandakar, 2008) <https://CRAN.R-project.org/package=forecast>, tseries (Trapletti & Hornik, 2020) <https://CRAN.R-project.org/package=tseries>, xts (Ryan & Ulrich, 2020) <https://CRAN.R-project.org/package=xts>, and stats (R Core Team, 2023) <https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html>. Additionally, it provides visualization tools via plotly (Sievert, 2020) <https://CRAN.R-project.org/package=plotly> and reactable (Glaz, 2023) <https://CRAN.R-project.org/package=reactable>. The package also incorporates macroeconomic datasets from the U.S. Bureau of Economic Analysis: Disposable Personal Income (DPI) <https://fred.stlouisfed.org/series/DPI>, Gross Domestic Product (GDP) <https://fred.stlouisfed.org/series/GDP>, and Personal Consumption Expenditures (PCEC) <https://fred.stlouisfed.org/series/PCEC>.
The Langmuir and Freundlich adsorption isotherms are pivotal in characterizing adsorption processes, essential across various scientific disciplines. Proper interpretation of adsorption isotherms involves robust fitting of data to the models, accurate estimation of parameters, and efficiency evaluation of the models, both in linear and non-linear forms. For researchers and practitioners in the fields of chemistry, environmental science, soil science, and engineering, a comprehensive package that satisfies all these requirements would be ideal for accurate and efficient analysis of adsorption data, precise model selection and validation for rigorous scientific inquiry and real-world applications. Details can be found in Langmuir (1918) <doi:10.1021/ja02242a004> and Giles (1973) <doi:10.1111/j.1478-4408.1973.tb03158.x>.
This package provides functions for analysis of data generated from experiments in augmented randomised complete block design according to Federer, W.T. (1961) <doi:10.2307/2527837>. Computes analysis of variance, adjusted means, descriptive statistics, genetic variability statistics etc. Further includes data visualization and report generation functions.