Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Affymetrix Affymetrix Mu11KsubB Array annotation data (chip mu11ksubb) assembled using data from public repositories.
The package facilitates implementation of workflows requiring miRNA predictions, it allows to integrate ranked miRNA target predictions from multiple sources available online and aggregate them with various methods which improves quality of predictions above any of the single sources. Currently predictions are available for Homo sapiens, Mus musculus and Rattus norvegicus (the last one through homology translation).
Clustering is carried out to identify patterns in transcriptomics profiles to determine clinically relevant subgroups of patients. Feature (gene) selection is a critical and an integral part of the process. Currently, there are many feature selection and clustering methods to identify the relevant genes and perform clustering of samples. However, choosing an appropriate methodology is difficult. In addition, extensive feature selection methods have not been supported by the available packages. Hence, we developed an integrative R-package called multiClust that allows researchers to experiment with the choice of combination of methods for gene selection and clustering with ease. Using multiClust, we identified the best performing clustering methodology in the context of clinical outcome. Our observations demonstrate that simple methods such as variance-based ranking perform well on the majority of data sets, provided that the appropriate number of genes is selected. However, different gene ranking and selection methods remain relevant as no methodology works for all studies.
Messina is a collection of algorithms for constructing optimally robust single-gene classifiers, and for identifying differential expression in the presence of outliers or unknown sample subgroups. The methods have application in identifying lead features to develop into clinical tests (both diagnostic and prognostic), and in identifying differential expression when a fraction of samples show unusual patterns of expression.
This package provides a package containing an environment representing the miRNA-1_0.CDF file.
Useful functions to work with sequence motifs in the analysis of genomics data. These include methods to annotate genomic regions or sequences with predicted motif hits and to identify motifs that drive observed changes in accessibility or expression. Functions to produce informative visualizations of the obtained results are also provided.
The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
This package contains example data for the MUGA array that is used by the R package DOQTL.
The package is unified implementation of MeSH.db, MeSH.AOR.db, and MeSH.PCR.db and also is interface to construct Gene-MeSH package (MeSH.XXX.eg.db). loadMeSHDbiPkg import sqlite file and generate MeSH.XXX.eg.db.
Calculates a single number for a whole sequence that reflects the propensity of a DNA binding protein to interact with it. The DNA binding protein has to be described with a PFM matrix, for example gotten from Jaspar.
The matchBox package enables comparing ranked vectors of features, merging multiple datasets, removing redundant features, using CAT-plots and Venn diagrams, and computing statistical significance.
DNA methylation is generally considered to be associated with transcriptional silencing. However, comprehensive, genome-wide investigation of this relationship requires the evaluation of potentially millions of correlation values between the methylation of individual genomic loci and expression of associated transcripts in a relatively large numbers of samples. Methodical makes this process quick and easy while keeping a low memory footprint. It also provides a novel method for identifying regions where a number of methylation sites are consistently strongly associated with transcriptional expression. In addition, Methodical enables housing DNA methylation data from diverse sources (e.g. WGBS, RRBS and methylation arrays) with a common framework, lifting over DNA methylation data between different genome builds and creating base-resolution plots of the association between DNA methylation and transcriptional activity at transcriptional start sites.
This is a package for the discovery of regulatory regions from Bis-seq data.
This package provides a package for the detection of de novo copy number deletions in targeted sequencing of trios with high sensitivity and positive predictive value.
Package performs summarization of replicates, filtering by frequency, several different options for imputing missing data, and a variety of options for transforming, batch correcting, and normalizing data.
Custom made algorithm and associated methods for finding, visualising and analysing biclusters in large gene expression data sets. Algorithm is based on with a supplied gene set of size n, finding the maximum strength correlation matrix containing m samples from the data set.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74Cv2\_probe\_tab.
The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.
This package provides a package containing an environment representing the MOE430A.CDF file.
This package provides a package containing an environment representing the Mu11KsubA.CDF file.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mouse430\_2\_probe\_tab.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0 subset of nonTCGA exomes) for the human genome version GRCh38.
This package provides a package containing an environment representing the MG_U74B.cdf file.
The missRows package implements the MI-MFA method to deal with missing individuals ('biological units') in multi-omics data integration. The MI-MFA method generates multiple imputed datasets from a Multiple Factor Analysis model, then the yield results are combined in a single consensus solution. The package provides functions for estimating coordinates of individuals and variables, imputing missing individuals, and various diagnostic plots to inspect the pattern of missingness and visualize the uncertainty due to missing values.