Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Detrending multivariate time-series to approximate stationarity when dealing with intensive longitudinal data, prior to Vector Autoregressive (VAR) or multilevel-VAR estimation. Classical VAR assumes weak stationarity (constant first two moments), and deterministic trends inflate spurious autocorrelation, biasing Granger-causality and impulse-response analyses. All functions operate on raw panel data and write detrended columns back to the data set, but differ in the level at which the trend is estimated. See, for instance, Wang & Maxwell (2015) <doi:10.1037/met0000030>; Burger et al. (2022) <doi:10.4324/9781003111238-13>; Epskamp et al. (2018) <doi:10.1177/2167702617744325>.
An implementation of W3C WebDriver 2.0 (<https://w3c.github.io/webdriver/>), allowing interaction with a Selenium Server (<https://www.selenium.dev/documentation/grid/>) instance from R'. Allows a web browser to be automated from R'.
This package performs variable selection based on subsampling, ranking forward selection. Details of the method are published in Lihui Liu, Hong Gu, Johan Van Limbergen, Toby Kenney (2020) SuRF: A new method for sparse variable selection, with application in microbiome data analysis Statistics in Medicine 40 897-919 <doi:10.1002/sim.8809>. Xo is the matrix of predictor variables. y is the response variable. Currently only binary responses using logistic regression are supported. X is a matrix of additional predictors which should be scaled to have sum 1 prior to analysis. fold is the number of folds for cross-validation. Alpha is the parameter for the elastic net method used in the subsampling procedure: the default value of 1 corresponds to LASSO. prop is the proportion of variables to remove in the each subsample. weights indicates whether observations should be weighted by class size. When the class sizes are unbalanced, weighting observations can improve results. B is the number of subsamples to use for ranking the variables. C is the number of permutations to use for estimating the critical value of the null distribution. If the doParallel package is installed, the function can be run in parallel by setting ncores to the number of threads to use. If the default value of 1 is used, or if the doParallel package is not installed, the function does not run in parallel. display.progress indicates whether the function should display messages indicating its progress. family is a family variable for the glm() fitting. Note that the glmnet package does not permit the use of nonstandard link functions, so will always use the default link function. However, the glm() fitting will use the specified link. The default is binomial with logistic regression, because this is a common use case. pval is the p-value for inclusion of a variable in the model. Under the null case, the number of false positives will be geometrically distributed with this as probability of success, so if this parameter is set to p, the expected number of false positives should be p/(1-p).
This package provides a toolkit for Reliability Availability and Maintainability (RAM) modeling of industrial process systems.
Imbibition causes seeds to expand, which results in the seed coat or testa being broken. Seed germination begins with imbibition. Imbibition aids in the transport of water into the developing ovules. Imbibition is required during the first stages of root water absorption.
This package provides a collection of functions to test and estimate Seemingly Unrelated Regression (usually called SUR) models, with spatial structure, by maximum likelihood and three-stage least squares. The package estimates the most common spatial specifications, that is, SUR with Spatial Lag of X regressors (called SUR-SLX), SUR with Spatial Lag Model (called SUR-SLM), SUR with Spatial Error Model (called SUR-SEM), SUR with Spatial Durbin Model (called SUR-SDM), SUR with Spatial Durbin Error Model (called SUR-SDEM), SUR with Spatial Autoregressive terms and Spatial Autoregressive Disturbances (called SUR-SARAR), SUR-SARAR with Spatial Lag of X regressors (called SUR-GNM) and SUR with Spatially Independent Model (called SUR-SIM). The methodology of these models can be found in next references Minguez, R., Lopez, F.A., and Mur, J. (2022) <doi:10.18637/jss.v104.i11> Mur, J., Lopez, F.A., and Herrera, M. (2010) <doi:10.1080/17421772.2010.516443> Lopez, F.A., Mur, J., and Angulo, A. (2014) <doi:10.1007/s00168-014-0624-2>.
Analysis of species count data in ecology often requires normalization to an identical sample size. Rarefying (random subsampling without replacement), which is a popular method for normalization, has been widely criticized for its poor reproducibility and potential distortion of the community structure. In the context of microbiome count data, researchers explicitly advised against the use of rarefying. An alternative to rarefying is scaling with ranked subsampling (SRS). SRS consists of two steps. In the first step, the total counts for all OTUs (operational taxonomic units) or species in each sample are divided by a scaling factor chosen in such a way that the sum of the scaled counts Cscaled equals Cmin. In the second step, the non-integer Cscaled values are converted into integers by an algorithm that we dub ranked subsampling. The Cscaled value for each OTU or species is split into the integer part Cint (Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled - Cints). Since the sum of Cint is smaller or equal to Cmin, additional delta C = Cmin - the sum of Cint counts have to be added to the library to reach the total count of Cmin. This is achieved as follows. OTUs are ranked in the descending order of their Cfrac values. Beginning with the OTU of the highest rank, single count per OTU is added to the normalized library until the total number of added counts reaches delta C and the sum of all counts in the normalized library equals Cmin. When the lowest Cfrag involved in picking delta C counts is shared by several OTUs, the OTUs used for adding a single count to the library are selected in the order of their Cint values. This selection minimizes the effect of normalization on the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled randomly without replacement. See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details.
Interface for creation of slp class smoother objects for use in Generalized Additive Models (as implemented by packages gam and mgcv').
This package provides methods and data for cluster detection and disease mapping.
Algorithms to compute spherical k-means partitions. Features several methods, including a genetic and a fixed-point algorithm and an interface to the CLUTO vcluster program.
Allows you to make clean, good-looking scatter plots with the option to easily add marginal density or box plots on the axes. It is also available as a module for jamovi (see <https://www.jamovi.org> for more information). Scatr is based on the cowplot package by Claus O. Wilke and the ggplot2 package by Hadley Wickham.
This package provides a systematic biology tool was developed to prioritize cancer subtype-specific drugs by integrating genetic perturbation, drug action, biological pathway, and cancer subtype. The capabilities of this tool include inferring patient-specific subpathway activity profiles in the context of gene expression profiles with subtype labels, calculating differentially expressed subpathways based on cultured human cells treated with drugs in the cMap (connectivity map) database, prioritizing cancer subtype specific drugs according to drug-disease reverse association score based on subpathway, and visualization of results (Castelo (2013) <doi:10.1186/1471-2105-14-7>; Han et al (2019) <doi:10.1093/bioinformatics/btz894>; Lamb and Justin (2006) <doi:10.1126/science.1132939>). Please cite using <doi:10.1093/bioinformatics/btab011>.
It allows to quickly perform permutation-based closed testing by sum-based global tests, and construct lower confidence bounds for the TDP, simultaneously over all subsets of hypotheses. As a main feature, it produces simultaneous lower confidence bounds for the proportion of active voxels in different clusters for fMRI cluster analysis. Details may be found in Vesely, Finos, and Goeman (2020) <arXiv:2102.11759>.
Predicts the presence of signal peptides in eukaryotic protein using hidden semi-Markov models. The implemented algorithm can be accessed from both the command line and GUI.
Sensitivity analysis for case-control studies in which some cases may meet a more narrow definition of being a case compared to other cases which only meet a broad definition. The sensitivity analyses are described in Small, Cheng, Halloran and Rosenbaum (2013, "Case Definition and Sensitivity Analysis", Journal of the American Statistical Association, 1457-1468). The functions sens.analysis.mh and sens.analysis.aberrant.rank provide sensitivity analyses based on the Mantel-Haenszel test statistic and aberrant rank test statistic as described in Rosenbaum (1991, "Sensitivity Analysis for Matched Case Control Studies", Biometrics); see also Section 1 of Small et al. The function adaptive.case.test provides adaptive inferences as described in Section 5 of Small et al. The function adaptive.noether.brown provides a sensitivity analysis for a matched cohort study based on an adaptive test. The other functions in the package are internal functions.
Determining potential output and the output gap - two inherently unobservable variables - is a major challenge for macroeconomists. sectorgap features a flexible modeling and estimation framework for a multivariate Bayesian state space model identifying economic output fluctuations consistent with subsectors of the economy. The proposed model is able to capture various correlations between output and a set of aggregate as well as subsector indicators. Estimation of the latent states and parameters is achieved using a simple Gibbs sampling procedure and various plotting options facilitate the assessment of the results. For details on the methodology and an illustrative example, see Streicher (2024) <https://www.research-collection.ethz.ch/handle/20.500.11850/653682>.
Easy to use interfaces to a number of imputation methods that fit in the not-a-pipe operator of the magrittr package.
This package implements a set of distribution modeling methods that are suited to species with small sample sizes (e.g., poorly sampled species or rare species). While these methods can also be used on well-sampled taxa, they are united by the fact that they can be utilized with relatively few data points. More details on the currently implemented methodologies can be found in Drake and Richards (2018) <doi:10.1002/ecs2.2373>, Drake (2015) <doi:10.1098/rsif.2015.0086>, and Drake (2014) <doi:10.1890/ES13-00202.1>.
SKIFTI files contain brain imaging data in coordinates across Tract Based Spatial Statistics (TBSS) skeleton, which represent the brain white matter intensity values. skiftiTools provides a unified environment for reading, writing, visualizing and manipulating SKIFTI-format data. It supports the "subsetting", "concatenating", and using data as data.frame for R statistical functions. The SKIFTI data is structured for convenient access to the data and metadata, and includes support for visualizations. For more information see Merisaari et al. (2024) <doi:10.57736/87d2-0608>.
R Codes and Datasets for Stroup, W. W. (2012). Generalized Linear Mixed Models Modern Concepts, Methods and Applications, CRC Press.
This package provides a suite of helper functions to support Bayesian Kernel Machine Regression (BKMR) analyses in environmental health research. It enables the simulation of realistic multivariate exposure data using Multivariate Skewed Gamma distributions, estimation of distributional parameters by subgroup, and application of adaptive, data-driven thresholds for feature selection via Posterior Inclusion Probabilities (PIPs). It is especially suited for handling skewed exposure data and enhancing the interpretability of BKMR results through principled variable selection. The methodology is shown in Hasan et. al. (2025) <doi:10.1101/2025.04.14.25325822>.
This package provides tools for conditional and spatially dependent density estimation using Spatial Logistic Gaussian Processes (SLGPs). The approach represents probability densities through finite-rank Gaussian process priors transformed via a spatial logistic density transformation, enabling flexible non-parametric modeling of heterogeneous data. Functionality includes density prediction, quantile and moment estimation, sampling methods, and preprocessing routines for basis functions. Applications arise in spatial statistics, machine learning, and uncertainty quantification. The methodology builds on the framework of Leonard (1978) <doi:10.1111/j.2517-6161.1978.tb01655.x>, Lenk (1988) <doi:10.1080/01621459.1988.10478625>, Tokdar (2007) <doi:10.1198/106186007X210206>, Tokdar (2010) <doi:10.1214/10-BA605>, and is further aligned with recent developments in Bayesian non-parametric modelling: see Gautier (2023) <https://boristheses.unibe.ch/4377/>, and Gautier (2025) <doi:10.48550/arXiv.2110.02876>).
Estimates sparse regression models (i.e., with few non-zero coefficients) in high-dimensional multi-task learning and transfer learning settings, as proposed by Rauschenberger et al. (2025) <https://orbilu.uni.lu/handle/10993/63425>.
This package performs Stratified Covariate Balancing with Markov blanket feature selection and use of synthetic cases. See Alemi et al. (2016) <DOI:10.1111/1475-6773.12628>.