Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Basic functions for plotting 2D and 3D views of a sphere, by default the Earth with its major coastline, and additional lines and points.
This package provides a minimal set of routines to calculate the Grantham distance <doi:10.1126/science.185.4154.862>. The Grantham distance attempts to provide a proxy for the evolutionary distance between two amino acids based on three key chemical properties: composition, polarity and molecular volume. In turn, evolutionary distance is used as a proxy for the impact of missense mutations. The higher the distance, the more deleterious the substitution is expected to be.
This package provides tools to adjust estimates of learning for guessing-related bias in educational and survey research. Implements standard guessing correction methods and a sophisticated latent class model that leverages informative pre-post test transitions to account for guessing behavior. The package helps researchers obtain more accurate estimates of actual learning when respondents may guess on closed-ended knowledge items. For theoretical background and empirical validation, see Cor and Sood (2018) <https://gsood.com/research/papers/guess.pdf>.
Analytics to read in and segment raw GENEActiv accelerometer data into epochs and events. For more details on the GENEActiv device, see <https://activinsights.com/resources/geneactiv-support-1-2/>.
After being given the location of your students submissions and a test file, the function runs each file that is an R script, R Markdown file, or Quarto document, and evaluates the results from all the given tests. Results are neatly returned in a data frame that has a row for each student, and a column for each test.
Aligning multiple visualisations by utilising generalised orthogonal Procrustes analysis (GPA) before combining coordinates into a single biplot display as described in Nienkemper-Swanepoel, le Roux and Lubbe (2023)<doi:10.1080/03610918.2021.1914089>. This is mainly suitable to combine visualisations constructed from multiple imputations, however, it can be generalised to combine variations of visualisations from the same datasets (i.e. resamples).
Create groups of ggplot2 layers that can be easily migrated from one plot to another, reducing redundant code and improving the ability to format many plots that draw from the same source ggpacket layers.
This package provides multiple palettes based on pride flags with tailored themes.
Genealogical data analysis including descriptive statistics (e.g., kinship and inbreeding coefficients) and gene-dropping simulations. See: "GENLIB: an R package for the analysis of genealogical data" Gauvin et al. (2015) <doi:10.1186/s12859-015-0581-5>.
We propose two distribution-free test statistics based on between-sample edge counts and measure the degree of relevance by standardized counts. Users can set edge costs in the graph to compare the parameters of the distributions. Methods for comparing distributions are as described in: Xiaoping Shi (2021) <arXiv:2107.00728>.
This package provides a gradient descent algorithm to find a geodesic relationship between real-valued independent variables and a manifold-valued dependent variable (i.e. geodesic regression). Available manifolds are Euclidean space, the sphere, hyperbolic space, and Kendall's 2-dimensional shape space. Besides the standard least-squares loss, the least absolute deviations, Huber, and Tukey biweight loss functions can also be used to perform robust geodesic regression. Functions to help choose appropriate cutoff parameters to maintain high efficiency for the Huber and Tukey biweight estimators are included, as are functions for generating random tangent vectors from the Riemannian normal distributions on the sphere and hyperbolic space. The n-sphere is a n-dimensional manifold: we represent it as a sphere of radius 1 and center 0 embedded in (n+1)-dimensional space. Using the hyperboloid model of hyperbolic space, n-dimensional hyperbolic space is embedded in (n+1)-dimensional Minkowski space as the upper sheet of a hyperboloid of two sheets. Kendall's 2D shape space with K landmarks is of real dimension 2K-4; preshapes are represented as complex K-vectors with mean 0 and magnitude 1. Details are described in Shin, H.-Y. and Oh, H.-S. (2020) <arXiv:2007.04518>. Also see Fletcher, P. T. (2013) <doi:10.1007/s11263-012-0591-y>.
Convert data to GeoJSON or TopoJSON from various R classes, including vectors, lists, data frames, shape files, and spatial classes. geojsonio does not aim to replace packages like sp', rgdal', rgeos', but rather aims to be a high level client to simplify conversions of data from and to GeoJSON and TopoJSON'.
This package provides a collection of Geoms for R's ggplot2 library. geom_shadowpath(), geom_shadowline(), geom_shadowstep() and geom_shadowpoint() functions draw a shadow below lines to make busy plots more aesthetically pleasing. geom_glowpath(), geom_glowline(), geom_glowstep() and geom_glowpoint() add a neon glow around lines to get a steampunk style.
Implementation of routines of the author's PhD thesis on gradient-free Gradient Boosting (Werner, Tino (2020) "Gradient-Free Gradient Boosting", URL <https://oops.uni-oldenburg.de/id/eprint/4290>').
Calculates additive and dominance genetic relationship matrices and their inverses, in matrix and tabular-sparse formats. It includes functions for checking and processing pedigree, calculating inbreeding coefficients (Meuwissen & Luo, 1992 <doi:10.1186/1297-9686-24-4-305>), as well as functions to calculate the matrix of genetic group contributions (Q), and adding those contributions to the genetic merit of animals (Quaas (1988) <doi:10.3168/jds.S0022-0302(88)79691-5>). Calculation of Q is computationally extensive. There are computationally optimized functions to calculate Q.
Makes the Genepop software available in R. This software implements a mixture of traditional population genetic methods and some more focused developments: it computes exact tests for Hardy-Weinberg equilibrium, for population differentiation and for genotypic disequilibrium among pairs of loci; it computes estimates of F-statistics, null allele frequencies, allele size-based statistics for microsatellites, etc.; and it performs analyses of isolation by distance from pairwise comparisons of individuals or population samples.
It provides materials (i.e. serial axes objects, Andrew's plot, various glyphs for scatter plot) to visualize high dimensional data.
Maximum likelihood estimation, random values generation, density computation and other functions for the exponential-Poisson generalised exponential-Poisson and Poisson-exponential distributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). "Poisson-exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128--144. <doi:10.1080/02664763.2016.1268571>. Louzada F., Ramos, P. L. and Ferreira, H. P. (2020). "Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence". Communications in Statistics--Simulation and Computation, 49(4): 1024--1043. <doi:10.1080/03610918.2018.1491988>. Barreto-Souza W. and Cribari-Neto F. (2009). "A generalization of the exponential-Poisson distribution". Statistics and Probability Letters, 79(24): 2493--2500. <doi:10.1016/j.spl.2009.09.003>.
We implemented multiple tests based on the restricted mean survival time (RMST) for general factorial designs as described in Munko et al. (2024) <doi:10.1002/sim.10017>. Therefore, an asymptotic test, a groupwise bootstrap test, and a permutation test are incorporated with a Wald-type test statistic. The asymptotic and groupwise bootstrap test take the asymptotic exact dependence structure of the test statistics into account to gain more power. Furthermore, confidence intervals for RMST contrasts can be calculated and plotted and a stepwise extension that can improve the power of the multiple tests is available.
Generalized LassO applied to knot selection in multivariate B-splinE Regression (GLOBER) implements a novel approach for estimating functions in a multivariate nonparametric regression model based on an adaptive knot selection for B-splines using the Generalized Lasso. For further details we refer the reader to the paper Savino, M. E. and Lévy-Leduc, C. (2023), <arXiv:2306.00686>.
This package provides functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science, and many others. Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc.
This package provides functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.
This package provides systematic, dependency-aware exploration of group sequential designs created with gsDesign'. Supports reproducible grid and random search over user-defined candidate sets, parallel evaluation via the future framework, standardized metric extraction, and auditable reporting for design-space evaluation and trade-off analysis. Methods for group sequential design are described in Anderson (2025) <doi:10.32614/CRAN.package.gsDesign>. The future framework for parallel processing is described in Bengtsson (2021) <doi:10.32614/RJ-2021-048>.
Forest-based statistical estimation and inference. GRF provides non-parametric methods for heterogeneous treatment effects estimation (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables), as well as least-squares regression, quantile regression, and survival regression, all with support for missing covariates.