Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Subject recruitment for medical research is challenging. Slow patient accrual leads to delay in research. Accrual monitoring during the process of recruitment is critical. Researchers need reliable tools to manage the accrual rate. This package provides an implementation of a Bayesian method that integrates researcher's experience on previous trials and data from the current study, providing reliable prediction on accrual rate for clinical studies. It provides functions for Bayesian accrual prediction which can be easily used by statisticians and clinical researchers.
Anti-Grain Geometry (AGG) is a high-quality and high-performance 2D drawing library. The ragg package provides a set of graphic devices based on AGG to use as alternative to the raster devices provided through the grDevices package.
This is a package for random number generation for the truncated multivariate normal and Student t distribution. It computes probabilities, quantiles and densities, including one-dimensional and bivariate marginal densities. It computes first and second moments (i.e. mean and covariance matrix) for the double-truncated multinormal case.
This package contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library. All models return coda mcmc objects that can then be summarized using the coda package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
This package provides functions to accompany A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2007.
This package provides tools to visualize simple graphs (networks) based on a transition matrix, utilities to plot flow diagrams, visualizing webs, electrical networks, etc. It also includes supporting material for the book "A practical guide to ecological modelling - using R as a simulation platform" by Karline Soetaert and Peter M.J. Herman (2009) and the book "Solving Differential Equations in R" by Karline Soetaert, Jeff Cash and Francesca Mazzia (2012).
The main purpose of this package is to provide the algorithmic complexity for short strings, an approximation of the Kolmogorov Complexity of a short string using the coding theorem method. While the database containing the complexity is provided in the data only package acss.data, this package provides functions accessing the data such as prob_random returning the posterior probability that a given string was produced by a random process. In addition, two traditional (but problematic) measures of complexity are also provided: entropy and change complexity.
This package provides non-parametric (and semi-parametric) kernel methods that seamlessly handle a mix of continuous, unordered, and ordered factor data types.
This package implements latent Dirichlet allocation (LDA) and related models. This includes (but is not limited to) sLDA, corrLDA, and the mixed-membership stochastic blockmodel. Inference for all of these models is implemented via a fast collapsed Gibbs sampler written in C. Utility functions for reading/writing data typically used in topic models, as well as tools for examining posterior distributions are also included.
mlr3misc provides frequently used helper functions and assertions used in mlr3 and its companion packages. It comes with helper functions for functional programming, for printing, to work with data.table, as well as some generally useful R6 classes. This package also supersedes the package BBmisc.
This package provides an interface to Amazon Web Services storage services, including Simple Storage Service (S3).
This package provides functions and data sets for actuarial science: modeling of loss distributions; risk theory and ruin theory; simulation of compound models, discrete mixtures and compound hierarchical models; credibility theory. It boasts support for many additional probability distributions to model insurance loss amounts and loss frequency: 19 continuous heavy tailed distributions; the Poisson-inverse Gaussian discrete distribution; zero-truncated and zero-modified extensions of the standard discrete distributions. It also supports phase-type distributions commonly used to compute ruin probabilities.
This package provides functions, documentation and example data to help divide geographic space into discrete polygons (zones). The functions are motivated by research into the merits of different zoning systems. A flexible ClockBoard zoning system is provided, which breaks-up space by concentric rings and radial lines emanating from a central point.
For distributions whose probability density functions are log-concave, the adaptive rejection sampling algorithm can be used to build envelope functions for sampling. For others, the modified adaptive rejection sampling algorithm, the concave-convex adaptive rejection sampling algorithm, and the adaptive slice sampling algorithm can be used. This R package mainly includes these four functions: rARS(), rMARS(), rCCARS(), and rASS(). These functions can realize sampling based on the algorithms above.
This package provides tools for the visualization of missing and/or imputed values are introduced, which can be used for exploring the data and the structure of the missing and/or imputed values. Depending on this structure of the missing values, the corresponding methods may help to identify the mechanism generating the missing values and explore the data including missing values. In addition, the quality of imputation can be visually explored using various univariate, bivariate, multiple and multivariate plot methods.
This package provides a toolset for Geometric Morphometrics and mesh processing. This includes (among other stuff) mesh deformations based on reference points, permutation tests, detection of outliers, processing of sliding semi-landmarks and semi-automated surface landmark placement.
This package lets you record test suite HTTP requests and replay them during future runs. It works by hooking into the webmockr R package for matching HTTP requests by various rules, and then caching real HTTP responses on disk in cassettes. Subsequent HTTP requests matching any previous requests in the same cassette use a cached HTTP response.
Many models contain tuning parameters (i.e. parameters that cannot be directly estimated from the data). These tools can be used to define objects for creating, simulating, or validating values for such parameters.
This package provides an R wrapper to the Python natural language processing (NLP) library spaCy, from http://spacy.io.
The jsonlite package provides a fast JSON parser and generator optimized for statistical data and the web. It offers flexible, robust, high performance tools for working with JSON in R and is particularly powerful for building pipelines and interacting with a web API. In addition to converting JSON data from/to R objects, jsonlite contains functions to stream, validate, and prettify JSON data. The unit tests included with the package verify that all edge cases are encoded and decoded consistently for use with dynamic data in systems and applications.
Recursive partitioning based on psychometric models, employing the general MOB algorithm (from package partykit) to obtain Bradley-Terry trees, Rasch trees, rating scale and partial credit trees, and MPT trees, trees for 1PL, 2PL, 3PL and 4PL models and generalized partial credit models.
This package provides a function to format R source code. Spaces and indent will be added to the code automatically, and comments will be preserved under certain conditions, so that R code will be more human-readable and tidy. There is also a Shiny app as a user interface in this package.
This package provides a menu-driven program and library of functions for carrying out convergence diagnostics and statistical and graphical analysis of Markov chain Monte Carlo (MCMC) sampling output.
This package provides an R interface to functions of the SAMtools library.