Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical methods for multiple testing with covariate information. Traditional multiple testing methods only consider a list of test statistics, such as p-values. Our methods incorporate the auxiliary information, such as the lengths of gene coding regions or the minor allele frequencies of SNPs, to improve power.
This package provides a set of genomic copy neutral samples hybridized using Illumina Methylation arrays (450k and EPIC).
This package provides a user-friendly interface to map on-targets and off-targets of CRISPR gRNA spacer sequences using bowtie. The alignment is fast, and can be performed using either commonly-used or custom CRISPR nucleases. The alignment can work with any reference or custom genomes. Both DNA- and RNA-targeting nucleases are supported.
This package provides tools for analyzing SingleCellExperiment objects as projects. for input into the chevreulShiny app downstream. Includes functions for analysis of single cell RNA sequencing data. Supported by NIH grants R01CA137124 and R01EY026661 to David Cobrinik.
Identifies differentially abundant populations between samples and groups in mass cytometry data. Provides methods for counting cells into hyperspheres, controlling the spatial false discovery rate, and visualizing changes in abundance in the high-dimensional marker space.
CNVfilteR identifies those CNVs that can be discarded by using the single nucleotide variant (SNV) calls that are usually obtained in common NGS pipelines.
CAGE is a widely used high throughput assay for measuring transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor package for performing a wide range of common data analysis tasks for CAGE and 5'-end data in general. Core functionality includes: import of CAGE TSSs (CTSSs), tag (or unidirectional) clustering for TSS identification, bidirectional clustering for enhancer identification, annotation with transcript and gene models, correlation of TSS and enhancer expression, calculation of TSS shapes, quantification of CAGE expression as expression matrices and genome brower visualization.
Gene Set Enrichment Analysis of P-value based statistics for outlier gene detection in dataset merged from multiple studies.
This package provides a package containing an environment representing the Canine.cdf file.
CNVrd2 uses next-generation sequencing data to measure human gene copy number for multiple samples, indentify SNPs tagging copy number variants and detect copy number polymorphic genomic regions.
The cBioPortalData R package accesses study datasets from the cBio Cancer Genomics Portal. It accesses the data either from the pre-packaged zip / tar files or from the API interface that was recently implemented by the cBioPortal Data Team. The package can provide data in either tabular format or with MultiAssayExperiment object that uses familiar Bioconductor data representations.
This package integrates literature-constrained and data-driven methods to infer signalling networks from perturbation experiments. It permits to extends a given network with links derived from the data via various inference methods and uses information on physical interactions of proteins to guide and validate the integration of links.
clevRvis provides a set of visualization techniques for clonal evolution. These include shark plots, dolphin plots and plaice plots. Algorithms for time point interpolation as well as therapy effect estimation are provided. Phylogeny-aware color coding is implemented. A shiny-app for generating plots interactively is additionally provided.
This package is for analysis of SILAC labeled complexome profiling data. It uses peptide table in tab-delimited format as an input and produces ready-to-use tables and plots.
With the development of high-throughput techniques, more and more gene expression analysis tend to replace hybridization-based microarrays with the revolutionary technology.The novel method encodes the category again by employing the rank of samples for each gene in each class. We then consider the correlation coefficient of gene and class with rank of sample and new rank of category. The highest correlation coefficient genes are considered as the feature genes which are most effective to classify the samples.
Subgroup classification is a basic task in genomic data analysis, especially for gene expression and DNA methylation data analysis. It can also be used to test the agreement to known clinical annotations, or to test whether there exist significant batch effects. The cola package provides a general framework for subgroup classification by consensus partitioning. It has the following features: 1. It modularizes the consensus partitioning processes that various methods can be easily integrated. 2. It provides rich visualizations for interpreting the results. 3. It allows running multiple methods at the same time and provides functionalities to straightforward compare results. 4. It provides a new method to extract features which are more efficient to separate subgroups. 5. It automatically generates detailed reports for the complete analysis. 6. It allows applying consensus partitioning in a hierarchical manner.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was C\_elegans\_probe\_tab.
coMethDMR identifies genomic regions associated with continuous phenotypes by optimally leverages covariations among CpGs within predefined genomic regions. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first without using any outcome information. Next, coMethDMR tests association between methylation within the sub-region and continuous phenotype using a random coefficient mixed effects model, which models both variations between CpG sites within the region and differential methylation simultaneously.
This package provides R wrappers of several on-target and off-target scoring methods for CRISPR guide RNAs (gRNAs). The following nucleases are supported: SpCas9, AsCas12a, enAsCas12a, and RfxCas13d (CasRx). The available on-target cutting efficiency scoring methods are RuleSet1, Azimuth, DeepHF, DeepCpf1, enPAM+GB, and CRISPRscan. Both the CFD and MIT scoring methods are available for off-target specificity prediction. The package also provides a Lindel-derived score to predict the probability of a gRNA to produce indels inducing a frameshift for the Cas9 nuclease. Note that DeepHF, DeepCpf1 and enPAM+GB are not available on Windows machines.
CARD is a reference-based deconvolution method that estimates cell type composition in spatial transcriptomics based on cell type specific expression information obtained from a reference scRNA-seq data. A key feature of CARD is its ability to accommodate spatial correlation in the cell type composition across tissue locations, enabling accurate and spatially informed cell type deconvolution as well as refined spatial map construction. CARD relies on an efficient optimization algorithm for constrained maximum likelihood estimation and is scalable to spatial transcriptomics with tens of thousands of spatial locations and tens of thousands of genes.
Celda is a suite of Bayesian hierarchical models for clustering single-cell RNA-sequencing (scRNA-seq) data. It is able to perform "bi-clustering" and simultaneously cluster genes into gene modules and cells into cell subpopulations. It also contains DecontX, a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. A variety of scRNA-seq data visualization functions is also included.
Statistical tools for ChIP-seq data analysis. The package includes the statistical method described in Kaufmann et al. (2009) PLoS Biology: 7(4):e1000090. Briefly, Taking the average DNA fragment size subjected to sequencing into account, the software calculates genomic single-nucleotide read-enrichment values. After normalization, sample and control are compared using a test based on the Poisson distribution. Test statistic thresholds to control the false discovery rate are obtained through random permutation.
Annotates data from liquid chromatography coupled to mass spectrometry (LC/MS) metabolomics experiments. Based on a network algorithm (O.Senan, A. Aguilar- Mogas, M. Navarro, O. Yanes, R.GuimerĂ and M. Sales-Pardo, Bioinformatics, 35(20), 2019), CliqueMS builds a weighted similarity network where nodes are features and edges are weighted according to the similarity of this features. Then it searches for the most plausible division of the similarity network into cliques (fully connected components). Finally it annotates metabolites within each clique, obtaining for each annotated metabolite the neutral mass and their features, corresponding to isotopes, ionization adducts and fragmentation adducts of that metabolite.
This package provides S4 classes for general nucleases, CRISPR nucleases, CRISPR nickases, and base editors.Several CRISPR-specific genome arithmetic functions are implemented to help extract genomic coordinates of spacer and protospacer sequences. Commonly-used CRISPR nuclease objects are provided that can be readily used in other packages. Both DNA- and RNA-targeting nucleases are supported.