Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements under/oversampling for probability estimation. To be used with machine learning methods such as AdaBoost, random forests, etc.
This package provides a GUI interface for automating data extraction from multiple images containing scatter and bar plots, semi-automated tools to tinker with extraction attempts, and a fully-loaded point-and-click manual extractor with image zoom, calibrator, and classifier. Also provides detailed and R-independent extraction reports as fully-embedded .html records.
This is a set of simple utility functions to perform mutual conversion between the current Japanese calendar system that Wareki, the old Japanese calendar system that the Kyureki calendar and the Julian and Gregorian calendar. To calculate each calendar method, it converts to the Julian Day Number.
Fits joint species distribution models ('jSDM') in a hierarchical Bayesian framework (Warton and al. 2015 <doi:10.1016/j.tree.2015.09.007>). The Gibbs sampler is written in C++'. It uses Rcpp', Armadillo and GSL to maximize computation efficiency.
Manage project dependencies from your DESCRIPTION file. Create a reproducible virtual environment with minimal additional files in your project. Provides tools to add, remove, and update dependencies as well as install existing dependencies with a single function.
Procedures for joint detection of changes in both expectation and variance in univariate sequences. Performs a statistical test of the null hypothesis of the absence of change points. In case of rejection performs an algorithm for change point detection. Reference - Bivariate change point detection - joint detection of changes in expectation and variance, Scandinavian Journal of Statistics, DOI 10.1111/sjos.12547.
Bayesian methods for estimating developmental age from ordinal dental data. For an explanation of the model used, see Konigsberg (2015) <doi:10.3109/03014460.2015.1045430>. For details on the conditional correlation correction, see Sgheiza (2022) <doi:10.1016/j.forsciint.2021.111135>. Dental scoring is based on Moorrees, Fanning, and Hunt (1963) <doi:10.1177/00220345630420062701>.
Some handy function in R.
Scientific journal numeric formatting policies implemented in code. Emphasis on formatting mean/upper/lower sets of values to pasteable text for journal submission. For example c(2e6, 1e6, 3e6) becomes "2.00 million (1.00--3.00)". Lancet and Nature have built-in styles for rounding and punctuation marks. Users may extend journal styles arbitrarily. Four metrics are supported; proportions, percentage points, counts and rates. Magnitudes for all metrics are discovered automatically.
Fit survival data and perform dynamic prediction under joint frailty-copula models for tumour progression and death. Likelihood-based methods are employed for estimating model parameters, where the baseline hazard functions are modeled by the cubic M-spline or the Weibull model. The methods are applicable for meta-analytic data containing individual-patient information from several studies. Survival outcomes need information on both terminal event time (e.g., time-to-death) and non-terminal event time (e.g., time-to-tumour progression). Methodologies were published in Emura et al. (2017) <doi:10.1177/0962280215604510>, Emura et al. (2018) <doi:10.1177/0962280216688032>, Emura et al. (2020) <doi:10.1177/0962280219892295>, Shinohara et al. (2020) <doi:10.1080/03610918.2020.1855449>, Wu et al. (2020) <doi:10.1007/s00180-020-00977-1>, and Emura et al. (2021) <doi:10.1177/09622802211046390>. See also the book of Emura et al. (2019) <doi:10.1007/978-981-13-3516-7>. Survival data from ovarian cancer patients are also available.
An implementation of fast cluster-based permutation analysis (CPA) for densely-sampled time data developed in Maris & Oostenveld, 2007 <doi:10.1016/j.jneumeth.2007.03.024>. Supports (generalized, mixed-effects) regression models for the calculation of timewise statistics. Provides both a wholesale and a piecemeal interface to the CPA procedure with an emphasis on interpretability and diagnostics. Integrates Julia libraries MixedModels.jl and GLM.jl for performance improvements, with additional functionalities for interfacing with Julia from R powered by the JuliaConnectoR package.
Simply and efficiently simulates (i) variants from reference genomes and (ii) reads from both Illumina <https://www.illumina.com/> and Pacific Biosciences (PacBio) <https://www.pacb.com/> platforms. It can either read reference genomes from FASTA files or simulate new ones. Genomic variants can be simulated using summary statistics, phylogenies, Variant Call Format (VCF) files, and coalescent simulationsâ the latter of which can include selection, recombination, and demographic fluctuations. jackalope can simulate single, paired-end, or mate-pair Illumina reads, as well as PacBio reads. These simulations include sequencing errors, mapping qualities, multiplexing, and optical/polymerase chain reaction (PCR) duplicates. Simulating Illumina sequencing is based on ART by Huang et al. (2012) <doi:10.1093/bioinformatics/btr708>. PacBio sequencing simulation is based on SimLoRD by Stöcker et al. (2016) <doi:10.1093/bioinformatics/btw286>. All outputs can be written to standard file formats.
Individual based simulations of hybridizing populations, where the accumulation of junctions is tracked. Furthermore, mathematical equations are provided to verify simulation outcomes. Both simulations and mathematical equations are based on Janzen (2018, <doi:10.1101/058107>) and Janzen (2022, <doi:10.1111/1755-0998.13519>).
Different algorithms to perform approximate joint diagonalization of a finite set of square matrices. Depending on the algorithm, orthogonal or non-orthogonal diagonalizer is found. These algorithms are particularly useful in the context of blind source separation. Original publications of the algorithms can be found in Ziehe et al. (2004), Pham and Cardoso (2001) <doi:10.1109/78.942614>, Souloumiac (2009) <doi:10.1109/TSP.2009.2016997>, Vollgraff and Obermayer <doi:10.1109/TSP.2006.877673>. An example of application in the context of Brain-Computer Interfaces EEG denoising can be found in Gouy-Pailler et al (2010) <doi:10.1109/TBME.2009.2032162>.
This package provides tools are provided to streamline Bayesian analyses in JAGS using the jagsUI package. Included are functions for extracting output in simpler format, functions for streamlining assessment of convergence, and functions for producing summary plots of output. Also included is a function that provides a simple template for running JAGS from R'. Referenced materials can be found at <DOI:10.1214/ss/1177011136>.
The free and open a statistical spreadsheet jamovi (<https://www.jamovi.org>) aims to make statistical analyses easy and intuitive. jamovi produces syntax that can directly be used in R (in connection with the R-package jmv'). Having import / export routines for the data files jamovi produces ('.omv') permits an easy transfer of data and analyses between jamovi and R.
This package provides tools to access the J-STAGE WebAPI and retrieve information published on J-STAGE <https://www.jstage.jst.go.jp/browse/-char/ja>.
This package performs a permutation test on the difference between two location parameters, a permutation correlation test, a permutation F-test, the Siegel-Tukey test, a ratio mean deviance test. Also performs some graphing techniques, such as for confidence intervals, vector addition, and Fourier analysis; and includes functions related to the Laplace (double exponential) and triangular distributions. Performs power calculations for the binomial test.
Fits the joint model proposed by Henderson and colleagues (2000) <doi:10.1093/biostatistics/1.4.465>, but extended to the case of multiple continuous longitudinal measures. The time-to-event data is modelled using a Cox proportional hazards regression model with time-varying covariates. The multiple longitudinal outcomes are modelled using a multivariate version of the Laird and Ware linear mixed model. The association is captured by a multivariate latent Gaussian process. The model is estimated using a Monte Carlo Expectation Maximization algorithm. This project was funded by the Medical Research Council (Grant number MR/M013227/1).
Jade Lizard and Reverse Jade Lizard Option Strategies are presented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Russell A. Stultz (â The option strategy desk reference: an essential reference for option traders (First edition.)â , 2019, ISBN: 9781949443912).
Takes an R expression and returns a job object with a $stop() method which can be called to terminate the background job. Also provides timeouts and other mechanisms for automatically terminating a background job. The result of the expression is available synchronously via $result or asynchronously with callbacks or through the promises package framework.
Fast extrapolation of univariate and multivariate time features using K-Nearest Neighbors. The compact set of hyper-parameters is tuned via grid or random search.
Metaprogramming utilities for converting R regression model formulae to equivalents in Julia <doi:10.1137/141000671>, via modifications to the abstract syntax tree. Supports translations in zero correlation random effects syntax, protection of expressions to be evaluated as-is, interaction terms, and more. Accepts strings or R formula objects and returns modified R formula objects where possible (or a modified string, if not a valid formula in R).
The age is estimated by calculating the Dirichlet Normal Energy (DNE) on the whole auricular surface and the apex of the auricular surface. It involves three estimation methods: principal component discriminant analysis (PCQDA), and principal component logistic regression analysis (PCLR) methods, principal component regression analysis with Southeast Asian (A_PCR), and principal component regression analysis with multipopulation (M_PCR). The package is created with the data from the Louis Lopes Collection in Lisbon, the 21st Century Identified Human Remains Collection in Coimbra, and the CAL Milano Cemetery Skeletal Collection in Milan, and the skeletal collection at Khon Kaen University (KKU) Human Skeletal Research Centre (HSRC), housed in the Department of Anatomy in the Faculty of Medicine at KKU in Khon Kaen.