Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
SOHPIE (pronounced as SOFIE) is a novel pseudo-value regression approach for differential co-abundance network analysis of microbiome data, which can include additional clinical covariate in the model. The full methodological details can be found in Ahn S and Datta S (2023) <arXiv:2303.13702v1>.
Empirical likelihood methods for asymptotically efficient estimation of models based on conditional or unconditional moment restrictions; see Kitamura, Tripathi & Ahn (2004) <doi:10.1111/j.1468-0262.2004.00550.x> and Owen (2013) <doi:10.1002/cjs.11183>. Kernel-based non-parametric methods for density/regression estimation and numerical routines for empirical likelihood maximisation are implemented in Rcpp for speed.
Add fancy CSS effects to your shinydashboards or shiny apps. 100% compatible with shinydashboardPlus and bs4Dash'.
Set of tools aimed at wrapping some of the functionalities of the packages tools, utils and codetools into a nicer format so that an IDE can use them.
This package provides tools to import and export from several existing pieces of ion-channel analysis software such as TAC', QUB', SCAN', and Clampfit', implements procedures such as dwell-time correction and defining bursts with a critical time, and provides tools for analysis of bursts, such as tools for sorting and plotting.
This package provides a toolkit for simulation studies concerning time-to-event endpoints with non-proportional hazards. SimNPH encompasses functions for simulating time-to-event data in various scenarios, simulating different trial designs like fixed-followup, event-driven, and group sequential designs. The package provides functions to calculate the true values of common summary statistics for the implemented scenarios and offers common analysis methods for time-to-event data. Helper functions for running simulations with the SimDesign package and for aggregating and presenting the results are also included. Results of the conducted simulation study are available in the paper: "A Comparison of Statistical Methods for Time-To-Event Analyses in Randomized Controlled Trials Under Non-Proportional Hazards", Klinglmüller et al. (2025) <doi:10.1002/sim.70019>.
An htmlwidget of the human body that allows you to hide/show and assign colors to 79 different body parts. The human widget is an htmlwidget', so it works in Quarto documents, R Markdown documents, or any other HTML medium. It also functions as an input/output widget in a shiny app.
Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.
You can use the functions provided by the package to make various statistical tables, such as baseline data tables. Creates Table 1', i.e., a description of the baseline patient characteristics, which is essential in every medical research. Supports both continuous and categorical variables, as well as p-values and standardized mean differences. This method was described by Mary L McHugh (2013) <doi:10.11613/bm.2013.018>.
L2 penalized logistic regression for both continuous and discrete predictors, with forward stagewise/forward stepwise variable selection procedure.
Building predictive models with stacking which is a type of ensemble learning. Learners can be specified from those implemented in caret'. For more information of the package, see Nukui and Onogi (2023) <doi:10.1101/2023.06.06.543970>.
Statistical Methods for Inferring Transmissions of Infectious Diseases from deep sequencing data (SMITID). It allow sequence-space-time host and viral population data storage, indexation and querying.
Computes the trimmed-k mean by removing the k smallest and k largest values from a numeric vector. Created for STAT 5400 at the University of Iowa.
Substitution matrices are important parameters in protein alignment algorithms. These matrices represent the likelihood that an amino acid will be substituted for another during mutation. This tool allows users to apply predefined and custom matrices and then explore the resulting alignments with interactive visualizations. SubVis requires the availability of a web browser.
This package provides a flexible framework combining variable screening and random projection techniques for fitting ensembles of predictive generalized linear models to high-dimensional data. Designed for extensibility, the package implements key techniques as S3 classes with user-friendly constructors, enabling easy integration and development of new procedures for high-dimensional applications. For more details see Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130> and Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>.
Misc support functions for rOpenGov and open data downloads.
An interface to explore trends in Twitter data using the Storywrangler Application Programming Interface (API), which can be found here: <https://github.com/janeadams/storywrangler>.
This package provides a simple progress bar to use for basic and advanced users that suits all those who prefer procedural programming. It is especially useful for integration into markdown files thanks to the progress bar's customisable appearance.
We have designed this package to address experimental scenarios involving multiple covariates. It focuses on construction of Optimal Covariate Designs (OCDs), checking space filling property of the developed design. The primary objective of the package is to generate OCDs using four methods viz., M array method, Juxtapose method, Orthogonal Integer Array and Hadamard method. The package also evaluates space filling properties of both the base design and OCDs using the MaxPro criterion, providing a meaningful basis for comparison. In addition, it includes tool to visualize the spread offered by the design points in the form of scatterplot, which help users to assess distribution and coverage of design points.
This package provides a select control widget for Shiny'. It is easily customizable, and one can easily use HTML in the items and KaTeX to type mathematics.
Generate data objects from XML versions of the Swiss Register of Plant Protection Products. An online version of the register can be accessed at <https://www.psm.admin.ch/de/produkte>. There is no guarantee of correspondence of the data read in using this package with that online version, or with the original registration documents. Also, the Federal Food Safety and Veterinary Office, coordinating the authorisation of plant protection products in Switzerland, does not answer requests regarding this package.
For Multi Parent Populations (MPP) Identity By Descend (IBD) probabilities are computed using Hidden Markov Models. These probabilities are then used in a mixed model approach for QTL Mapping as described in Li et al. (<doi:10.1007/s00122-021-03919-7>).
This is a wrapper of the React library React-Toastify'. It allows to show some notifications (toasts) in Shiny applications. There are options for the style, the position, the transition effect, and more.
It provides miscellaneous sequence analysis functions for describing episodes in individual sequences, measuring association between domains in multidimensional sequence analysis (see Piccarreta (2017) <doi:10.1177/0049124115591013>), heat maps of sequence data, Globally Interdependent Multidimensional Sequence Analysis (see Robette et al (2015) <doi:10.1177/0081175015570976>), smoothing sequences for index plots (see Piccarreta (2012) <doi:10.1177/0049124112452394>), coding sequences for Qualitative Harmonic Analysis (see Deville (1982)), measuring stress from multidimensional scaling factors (see Piccarreta and Lior (2010) <doi:10.1111/j.1467-985X.2009.00606.x>), symmetrical (or canonical) Partial Least Squares (see Bry (1996)).