Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a convenience package for use while drafting code. It facilitates making stand-out comment lines decorated with bands of characters. The input text strings are converted into R comment lines, suitably formatted. These are then displayed in a console window and, if possible, automatically transferred to a clipboard ready for pasting into an R script. Designed to save time when drafting R scripts that will need to be navigated and maintained by other programmers.
An implementation of methods for extracting a sparse unweighted network (i.e. a backbone) from an unweighted network (e.g., Hamann et al., 2016 <doi:10.1007/s13278-016-0332-2>), a weighted network (e.g., Serrano et al., 2009 <doi:10.1073/pnas.0808904106>), or a weighted projection (e.g., Neal et al., 2021 <doi:10.1038/s41598-021-03238-3>).
Create randomizations for block random clinical trials. Can also produce a pdf file of randomization cards.
Fully Bayesian inference for estimating the number of clusters and related parameters to heterogeneous binary data.
Combine diverse evidence across multiple studies to test a high level scientific theory. The methods can also be used as an alternative to a standard meta-analysis.
Running and comparing meta-analyses of data with hierarchical Bayesian models in Stan, including convenience functions for formatting data, plotting and pooling measures specific to meta-analysis. This implements many models from Meager (2019) <doi:10.1257/app.20170299>.
This package provides a collection of LaTeX styles using Beamer customization for pdf-based presentation slides in RMarkdown'. At present it contains RMarkdown adaptations of the LaTeX themes Metropolis (formerly mtheme') theme by Matthias Vogelgesang and others (now included in TeXLive'), the IQSS by Ista Zahn (which is included here), and the Monash theme by Rob J Hyndman. Additional (free) fonts may be needed: Metropolis prefers Fira', and IQSS requires Libertinus'.
Retrieve and import data from the INKAR database (Indikatoren und Karten zur Raum- und Stadtentwicklung Datenbank, <https://www.inkar.de>) of the Federal Office for Building and Regional Planning (BBSR) in Bonn using their JSON API.
The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed. The package is based on the work in Rebora P (2014) <doi:10.32614/RJ-2014-028>.
Posterior distribution in the Black-Litterman model is computed from a prior distribution given in the form of a time series of asset returns and a continuous distribution of views provided by the user as an external function.
This package provides methods for frontier analysis, Data Envelopment Analysis (DEA), under different technology assumptions (fdh, vrs, drs, crs, irs, add/frh, and fdh+), and using different efficiency measures (input based, output based, hyperbolic graph, additive, super, and directional efficiency). Peers and slacks are available, partial price information can be included, and optimal cost, revenue and profit can be calculated. Evaluation of mergers is also supported. Methods for graphing the technology sets are also included. There is also support for comparative methods based on Stochastic Frontier Analyses (SFA) and for convex nonparametric least squares of convex functions (STONED). In general, the methods can be used to solve not only standard models, but also many other model variants. It complements the book, Bogetoft and Otto, Benchmarking with DEA, SFA, and R, Springer-Verlag, 2011, but can of course also be used as a stand-alone package.
Computation of bootstrap p-values through inversion of confidence intervals, including convenience functions for regression models and tests of location.
Data Package that includes several examples of chemical and biological data networks, i.e. data graph structured.
This package provides a robust framework for analyzing mortality data from bioassays for one or several strains/lines/populations.
This package provides a beginners toolbox to help those in ecology who want to deepen their understanding or utilize Bioacoustics in their work. The package has a number of utilizations from calculating frequency from waveform, performing operations in dB, and determining acoustic range of recorders. The majority of this package is based on key concepts learned from the K. Lisa Yang Center for Conservation Bioacoustics at Cornell University and their associated course: Introduction to Bioacoustics course. More information can be found within the walk through vignettes at <https://github.com/MattyD797/bioSNR/tree/main/vignettes>.
This package implements three test procedures using bootstrap resampling techniques for assessing treatment effects in one-way ANOVA models with unequal variances (heteroscedasticity). It includes a parametric bootstrap likelihood ratio test (PB_LRT()), a pairwise parametric bootstrap mean test (PPBMT()), and a Rademacher wild pairwise non-parametric bootstrap test (RWPNPBT()). These methods provide robust alternatives to classical ANOVA and standard pairwise comparisons when the assumption of homogeneity of variances is violated.
Bayesian purity model to estimate tumor purity using methylation array data (DNA methylation Infinium 450K array data) without reference samples.
Perform fundamental analyses using Bayesian parametric and non-parametric inference (regression, anova, 1 and 2 sample inference, non-parametric tests, etc.). (Practically) no Markov chain Monte Carlo (MCMC) is used; all exact finite sample inference is completed via closed form solutions or else through posterior sampling automated to ensure precision in interval estimate bounds. Diagnostic plots for model assessment, and key inferential quantities (point and interval estimates, probability of direction, region of practical equivalence, and Bayes factors) and model visualizations are provided. Bayes factors are computed either by the Savage Dickey ratio given in Dickey (1971) <doi:10.1214/aoms/1177693507> or by Chib's method as given in xxx. Interpretations are from Kass and Raftery (1995) <doi:10.1080/01621459.1995.10476572>. ROPE bounds are based on discussions in Kruschke (2018) <doi:10.1177/2515245918771304>. Methods for determining the number of posterior samples required are described in Doss et al. (2014) <doi:10.1214/14-EJS957>. Bayesian model averaging is done in part by Feldkircher and Zeugner (2015) <doi:10.18637/jss.v068.i04>. Methods for contingency table analysis is described in Gunel et al. (1974) <doi:10.1093/biomet/61.3.545>. Variational Bayes (VB) methods are described in Salimans and Knowles (2013) <doi:10.1214/13-BA858>. Mediation analysis uses the framework described in Imai et al. (2010) <doi:10.1037/a0020761>. The loss-likelihood bootstrap used in the non-parametric regression modeling is described in Lyddon et al. (2019) <doi:10.1093/biomet/asz006>. Non-parametric survival methods are described in Qing et al. (2023) <doi:10.1002/pst.2256>. Methods used for the Bayesian Wilcoxon signed-rank analysis is given in Chechile (2018) <doi:10.1080/03610926.2017.1388402> and for the Bayesian Wilcoxon rank sum analysis in Chechile (2020) <doi:10.1080/03610926.2018.1549247>. Correlation analysis methods are carried out by Barch and Chechile (2023) <doi:10.32614/CRAN.package.DFBA>, and described in Lindley and Phillips (1976) <doi:10.1080/00031305.1976.10479154> and Chechile and Barch (2021) <doi:10.1016/j.jmp.2021.102638>. See also Chechile (2020, ISBN: 9780262044585).
This package provides a Bayesian regression model for discrete response, where the conditional distribution is modelled via a discrete Weibull distribution. This package provides an implementation of Metropolis-Hastings and Reversible-Jumps algorithms to draw samples from the posterior. It covers a wide range of regularizations through any two parameter prior. Examples are Laplace (Lasso), Gaussian (ridge), Uniform, Cauchy and customized priors like a mixture of priors. An extensive visual toolbox is included to check the validity of the results as well as several measures of goodness-of-fit.
Bayesian Nonparametric sensitivity analysis of multiple testing procedures for p values with arbitrary dependencies, based on the Dirichlet process prior distribution.
This package provides a streamlined and user-friendly framework for bootstrapping in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. The parametric bootstrap implemented here was developed and applied in Pesigan, Russell, and Chow (2025) <doi:10.1037/met0000779>.
Fits latent threshold model for simulated data and describes how to adjust model using real data. Implements algorithm proposed by Nakajima and West (2013) <doi:10.1080/07350015.2012.747847>. This package has a function to generate data, a function to configure priors and a function to fit the model. Examples may be checked inside the demonstration files.
An interactive document on the topic of binary logistic regression analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/BinaryLogisticRegressionModelling/>.
The shiny application bdDwC makes biodiversity data field names Darwin Core compatible.