Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for measuring the strength of association between a network and a phenotype. It does this by measuring clustering of the phenotype across the network (Knet). Vertices can also be individually ranked by their strength of association with high-weight vertices (Knode).
stJoincount facilitates the application of join count analysis to spatial transcriptomic data generated from the 10x Genomics Visium platform. This tool first converts a labeled spatial tissue map into a raster object, in which each spatial feature is represented by a pixel coded by label assignment. This process includes automatic calculation of optimal raster resolution and extent for the sample. A neighbors list is then created from the rasterized sample, in which adjacent and diagonal neighbors for each pixel are identified. After adding binary spatial weights to the neighbors list, a multi-categorical join count analysis is performed to tabulate "joins" between all possible combinations of label pairs. The function returns the observed join counts, the expected count under conditions of spatial randomness, and the variance calculated under non-free sampling. The z-score is then calculated as the difference between observed and expected counts, divided by the square root of the variance.
sosta (Spatial Omics STructure Analysis) is a package for analyzing spatial omics data to explore tissue organization at the anatomical structure level. It reconstructs anatomically relevant structures based on molecular features or cell types. It further calculates a range of metrics at the structure level to quantitatively describe tissue architecture. The package is designed to integrate with other packages for the analysis of spatial omics data.
Single cell multiome data, containing chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) information analyzed with the ArchR package and presented as MultiAssayExperiment objects.
The package contains functions that can be used to compare expression measures on different array platforms.
This package has been prepared to assist users in computing either a sample size or power value for a microarray experimental study. The user is referred to the cited references for technical background on the methodology underpinning these calculations. This package provides support for five types of sample size and power calculations. These five types can be adapted in various ways to encompass many of the standard designs encountered in practice.
The package generally provides methods for gene set enrichment analysis of high-throughput RNA-Seq data by integrating differential expression and splicing. It uses negative binomial distribution to model read count data, which accounts for sequencing biases and biological variation. Based on permutation tests, statistical significance can also be achieved regarding each gene's differential expression and splicing, respectively.
This package builds on sangerseqR to allow users to create contigs from collections of Sanger sequencing reads. It provides a wide range of options for a number of commonly-performed actions including read trimming, detecting secondary peaks, and detecting indels using a reference sequence. All parameters can be adjusted interactively either in R or in the associated Shiny applications. There is extensive online documentation, and the package can outputs detailed HTML reports, including chromatograms.
SAFE is a resampling-based method for testing functional categories in gene expression experiments. SAFE can be applied to 2-sample and multi-class comparisons, or simple linear regressions. Other experimental designs can also be accommodated through user-defined functions.
syntenet can be used to infer synteny networks from whole-genome protein sequences and analyze them. Anchor pairs are detected with the MCScanX algorithm, which was ported to this package with the Rcpp framework for R and C++ integration. Anchor pairs from synteny analyses are treated as an undirected unweighted graph (i.e., a synteny network), and users can perform: i. network clustering; ii. phylogenomic profiling (by identifying which species contain which clusters) and; iii. microsynteny-based phylogeny reconstruction with maximum likelihood.
Subtypes are defined as groups of samples that have distinct molecular and clinical features. Genomic data can be analyzed for discovering patient subtypes, associated with clinical data, especially for survival information. This package is aimed to identify subtypes that are both clinically relevant and biologically meaningful.
This package is developed for facilitating parallel computing in R. It is capable to create an R object in the shared memory space and share the data across multiple R processes. It avoids the overhead of memory dulplication and data transfer, which make sharing big data object across many clusters possible.
An elaborate molecular evolutionary framework that facilitates straightforward simulation of codon genetic sequences subjected to different degrees and/or patterns of Darwinian selection. The model is built upon the fitness landscape paradigm of Sewall Wright, as popularised by the mutation-selection model of Halpern and Bruno. This enables realistic evolutionary process of living organisms to be reproducible seamlessly. For example, an Ornstein-Uhlenbeck fitness update algorithm is incorporated herein. Consequently, otherwise complex biological processes, such as the effect of the interplay between genetic drift and fitness landscape fluctuations on the inference of diversifying selection, may now be investigated with minimal effort. Frequency-dependent and stochastic fitness landscape update techniques are available.
SNP locations and alleles for Homo sapiens extracted from NCBI dbSNP Build 149. The source data files used for this package were created by NCBI between November 8-12, 2016, and contain SNPs mapped to reference genome GRCh38.p7 (a patched version of GRCh38 that doesn't alter chromosomes 1-22, X, Y, MT). Note that these SNPs can be "injected" in BSgenome.Hsapiens.NCBI.GRCh38 or in BSgenome.Hsapiens.UCSC.hg38.
This package provides an R interface for various subsampling algorithms implemented in python packages. Currently, interfaces to the geosketch and scSampler python packages are implemented. In addition it also provides diagnostic plots to evaluate the subsampling.
The seqCAT package uses variant calling data (in the form of VCF files) from high throughput sequencing technologies to authenticate and validate the source, function and characteristics of biological samples used in scientific endeavours.
Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set.
The Mass Spec Query Language (MassQL) is a domain-specific language enabling to express a query and retrieve mass spectrometry (MS) data in a more natural and understandable way for MS users. It is inspired by SQL and is by design programming language agnostic. The SpectraQL package adds support for the MassQL query language to R, in particular to MS data represented by Spectra objects. Users can thus apply MassQL expressions to analyze and retrieve specific data from Spectra objects.
This package provides methods to efficiently detect competitive endogeneous RNA interactions between two genes. Such interactions are mediated by one or several miRNAs such that both gene and miRNA expression data for a larger number of samples is needed as input. The SPONGE package now also includes spongEffects: ceRNA modules offer patient-specific insights into the miRNA regulatory landscape.
This package implements a parametric semi-supervised mixture model. The permutation test detects markers with main or interactive effects, without distinguishing them. Possible applications include genome-wide association analysis and differential expression analysis.
This package provides a package containing an environment representing the S_aureus.cdf file.
Scafari is a Shiny application designed for the analysis of single-cell DNA sequencing (scDNA-seq) data provided in .h5 file format. The analysis process is structured into the four key steps "Sequencing", "Panel", "Variants", and "Explore Variants". It supports various analyses and visualizations.
Assigning probability scores to protein interactions captured in affinity purification mass spectrometry (AP-MS) expriments to infer protein-protein interactions. The output would facilitate non-specific background removal as contaminants are commonly found in AP-MS data.
snapcount is a client interface to the Snaptron webservices which support querying by gene name or genomic region. Results include raw expression counts derived from alignment of RNA-seq samples and/or various summarized measures of expression across one or more regions/genes per-sample (e.g. percent spliced in).