Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform change points detection on univariate and multivariate time series according to the methods presented by Asael Fabian Martà nez and Ramsés H. Mena (2014) <doi:10.1214/14-BA878> and Corradin, Danese and Ongaro (2022) <doi:10.1016/j.ijar.2021.12.019>. It also clusters different types of time dependent data with common change points, see "Model-based clustering of time-dependent observations with common structural changes" (Corradin,Danese,KhudaBukhsh and Ongaro, 2024) <doi:10.48550/arXiv.2410.09552> for details.
Stock, Options and Futures Trading Strategies for Traders and Investors with Bullish Outlook are represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
This package contains a split population survival estimator that models the misclassification probability of failure versus right-censored events. The split population survival estimator is described in Bagozzi et al. (2019) <doi:10.1017/pan.2019.6>.
Asymptotic simultaneous confidence intervals for comparison of many treatments with one control, for the difference of binomial proportions, allows for Dunnett-like-adjustment, Bonferroni or unadjusted intervals. Simulation of power of the above interval methods, approximate calculation of any-pair-power, and sample size iteration based on approximate any-pair power. Exact conditional maximum test for many-to-one comparisons to a control.
This package provides infrastructure to accurately measure and compare the execution time of R expressions.
Spike and slab regression with a variety of residual error distributions corresponding to Gaussian, Student T, probit, logit, SVM, and a few others. Spike and slab regression is Bayesian regression with prior distributions containing a point mass at zero. The posterior updates the amount of mass on this point, leading to a posterior distribution that is actually sparse, in the sense that if you sample from it many coefficients are actually zeros. Sampling from this posterior distribution is an elegant way to handle Bayesian variable selection and model averaging. See <DOI:10.1504/IJMMNO.2014.059942> for an explanation of the Gaussian case.
Get a current financial year, start of current month, End of current month, start of financial year and end of it. Allow for offset from the date.
We perform general mediation analysis in the Bayesian setting using the methods described in Yu and Li (2022, ISBN:9780367365479). With the package, the mediation analysis can be performed on different types of outcomes (e.g., continuous, binary, categorical, or time-to-event), with default or user-defined priors and predictive models. The Bayesian estimates and credible sets of mediation effects are reported as analytic results.
Bindings for additional tree-based model engines for use with the parsnip package. Models include gradient boosted decision trees with LightGBM (Ke et al, 2017.), conditional inference trees and conditional random forests with partykit (Hothorn and Zeileis, 2015. and Hothorn et al, 2006. <doi:10.1198/106186006X133933>), and accelerated oblique random forests with aorsf (Jaeger et al, 2022 <doi:10.5281/zenodo.7116854>).
This package provides a collection of S4 classes which implements different methods to estimate and deal with densities in bounded domains. That is, densities defined within the interval [lower.limit, upper.limit], where lower.limit and upper.limit are values that can be set by the user.
This package provides spatial data for mapping Brunei, including boundaries for districts, mukims, and kampongs, as well as locations of key infrastructure such as masjids, hospitals, clinics, and schools. The package supports researchers, analysts, and developers working with Bruneiâ s geographic and demographic data, offering a quick and accessible foundation for creating maps and conducting spatial studies.
This package provides a cross-platform representation of models as sets of equations that facilitates modularity in model building and allows users to harness modern techniques for numerical integration and data visualization. Documentation is provided by several vignettes included in this package; also see Lochocki et al. (2022) <doi:10.1093/insilicoplants/diac003>.
An implementation of the Bayesian model averaging method of Psioda and others (2019) <doi:10.1093/biostatistics/kxz014> for basket trials. Contains a user-friendly wrapper for simulating basket trials under conditions and analyzing them with a Bayesian model averaging approach.
Producing probabilistic projections of net migration rate for all countries of the world or for subnational units using a Bayesian hierarchical model by Azose an Raftery (2015) <doi:10.1007/s13524-015-0415-0>.
Includes algorithms to assess alpha and beta diversity in all their dimensions (taxonomic, phylogenetic and functional). It allows performing a number of analyses based on species identities/abundances, phylogenetic/functional distances, trees, convex-hulls or kernel density n-dimensional hypervolumes depicting species relationships. Cardoso et al. (2015) <doi:10.1111/2041-210X.12310>.
Enables the user to infer potential synthetic lethal relationships by analysing relationships between bimodally distributed gene pairs in big gene expression datasets. Enables the user to visualise these candidate synthetic lethal relationships.
This package provides functions for species distribution modeling, calibration and evaluation, ensemble of models, ensemble forecasting and visualization. The package permits to run consistently up to 10 single models on a presence/absences (resp presences/pseudo-absences) dataset and to combine them in ensemble models and ensemble projections. Some bench of other evaluation and visualization tools are also available within the package.
This package implements the Block-wise Rank in Similarity Graph Edge-count test (BRISE), a rank-based two-sample test designed for block-wise missing data. The method constructs (pattern) pair-wise similarity graphs and derives quadratic test statistics with asymptotic chi-square distribution or permutation-based p-values. It provides both vectorized and congregated versions for flexible inference. The methodology is described in Zhang, Liang, Maile, and Zhou (2025) <doi:10.48550/arXiv.2508.17411>.
This package provides a collection of integrated tools designed to seamlessly interact with each other for the analysis of biogenic silica bSi in inland and marine sediments. These tools share common data representations and follow a consistent API design. The primary goal of the bSi package is to simplify the installation process, facilitate data loading, and enable the analysis of multiple samples for biogenic silica fluxes. This package is designed to enhance the efficiency and coherence of the entire bSi analytic workflow, from data loading to model construction and visualization tailored towards reconstructing productivity in aquatic ecosystems.
For studying recurrent disease and death with competing risks, comparisons based on the well-known cumulative incidence function can be confounded by different prevalence rates of the competing events. Alternatively, comparisons of the conditional distribution of the survival time given the failure event type are more relevant for investigating the prognosis of different patterns of recurrence disease. This package implements a nonparametric estimator for the conditional cumulative incidence function and a nonparametric conditional bivariate cumulative incidence function for the bivariate gap times proposed in Huang et al. (2016) <doi:10.1111/biom.12494>.
This package provides JAR to perform Markov chain Monte Carlo (MCMC) inference using the popular Bayesian Evolutionary Analysis by Sampling Trees BEAST X software library of Baele et al (2025) <doi:10.1038/s41592-025-02751-x>. BEAST X supports auto-tuning Metropolis-Hastings, slice, Hamiltonian Monte Carlo and Sequential Monte Carlo sampling for a large variety of composable standard and phylogenetic statistical models using high performance computing. By placing the BEAST X JAR in this package, we offer an efficient distribution system for BEAST X use by other R packages using CRAN.
Computation and visualization of Bayesian Regions of Evidence to systematically evaluate the sensitivity of a superiority or non-inferiority claim against any prior assumption of its assessors. Methodological details are elaborated by Hoefler and Miller (<https://osf.io/jxnsv>). Besides generic functions, the package also provides an intuitive Shiny application, that can be run in local R environments.
Stan-based curve-fitting function for use with package breathtestcore by the same author. Stan functions are refactored here for easier testing.
Bone Profiler is a scientific method and a software used to model bone section for paleontological and ecological studies. See Girondot and Laurin (2003) <https://www.researchgate.net/publication/280021178_Bone_profiler_A_tool_to_quantify_model_and_statistically_compare_bone-section_compactness_profiles> and Gônet, Laurin and Girondot (2022) <https://palaeo-electronica.org/content/2022/3590-bone-section-compactness-model>.