Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a suite of functions for simulating spatial patterns of cells in tissue images. Output images are multitype point data in SingleCellExperiment format. Each point represents a cell, with its 2D locations and cell type. Potential cell patterns include background cells, tumour/immune cell clusters, immune rings, and blood/lymphatic vessels.
This package provides tools for NanoString Technologies GeoMx Technology. Package to easily graph on top of an OME-TIFF image. Plotting annotations can range from tissue segment to gene expression.
SPsimSeq uses a specially designed exponential family for density estimation to constructs the distribution of gene expression levels from a given real RNA sequencing data (single-cell or bulk), and subsequently simulates a new dataset from the estimated marginal distributions using Gaussian-copulas to retain the dependence between genes. It allows simulation of multiple groups and batches with any required sample size and library size.
Comprehensive R package for differential composition and variability analysis in single-cell RNA sequencing, CyTOF, and microbiome data. Provides robust Bayesian modeling with outlier detection, random effects, and advanced statistical methods for cell type proportion analysis. Features include probabilistic outlier identification, mixed-effect modeling, differential variability testing, and comprehensive visualization tools. Perfect for cancer research, immunology, developmental biology, and single-cell genomics applications.
SpaceTrooper performs Quality Control analysis using data driven GLM models of Image-Based spatial data, providing exploration plots, QC metrics computation, outlier detection. It implements a GLM strategy for the detection of low quality cells in imaging-based spatial data (Transcriptomics and Proteomics). It additionally implements several plots for the visualization of imaging based polygons through the ggplot2 package.
survClust is an outcome weighted integrative clustering algorithm used to classify multi-omic samples on their available time to event information. The resulting clusters are cross-validated to avoid over overfitting and output classification of samples that are molecularly distinct and clinically meaningful. It takes in binary (mutation) as well as continuous data (other omic types).
The spatialHeatmap package offers the primary functionality for visualizing cell-, tissue- and organ-specific assay data in spatial anatomical images. Additionally, it provides extended functionalities for large-scale data mining routines and co-visualizing bulk and single-cell data. A description of the project is available here: https://spatialheatmap.org.
sosta (Spatial Omics STructure Analysis) is a package for analyzing spatial omics data to explore tissue organization at the anatomical structure level. It reconstructs anatomically relevant structures based on molecular features or cell types. It further calculates a range of metrics at the structure level to quantitatively describe tissue architecture. The package is designed to integrate with other packages for the analysis of spatial omics data.
Read in imaging-based spatial transcriptomics technology data. Current available modules are for Xenium by 10X Genomics, CosMx by Nanostring, MERSCOPE by Vizgen, or STARmapPLUS from Broad Institute. You can choose to read the data in as a SpatialExperiment or a SingleCellExperiment object.
Select hits from synthetic lethal RNAi screen data. For example, there are two identical celllines except one gene is knocked-down in one cellline. The interest is to find genes that lead to stronger lethal effect when they are knocked-down further by siRNA. Quality control and various visualisation tools are implemented. Four different algorithms could be used to pick up the interesting hits. This package is designed based on 384 wells plates, but may apply to other platforms with proper configuration.
The package contains BioGRID interactions for arabidopsis(thale cress), c.elegans, fruit fly, human, mouse, yeast( budding yeast ) and S.pombe (fission yeast) . Entrez ids, official names and unique ids can be used to find proteins. The format of interactions are lists. For each gene/protein, there is an entry in the list with "name" containing name of the gene/protein and "interactors" containing the list of genes/proteins interacting with it.
This package provides a pipeline for analysis of GC-MS data acquired in selected ion monitoring (SIM) mode. The tool also provides a guidance in choosing appropriate fragments for the targets of interest by using an optimization algorithm. This is done by considering overlapping peaks from a provided library by the user.
scoreInvHap can get the samples inversion status of known inversions. scoreInvHap uses SNP data as input and requires the following information about the inversion: genotype frequencies in the different haplotypes, R2 between the region SNPs and inversion status and heterozygote genotypes in the reference. The package include this data for 21 inversions.
slalom is a scalable modelling framework for single-cell RNA-seq data that uses gene set annotations to dissect single-cell transcriptome heterogeneity, thereby allowing to identify biological drivers of cell-to-cell variability and model confounding factors. The method uses Bayesian factor analysis with a latent variable model to identify active pathways (selected by the user, e.g. KEGG pathways) that explain variation in a single-cell RNA-seq dataset. This an R/C++ implementation of the f-scLVM Python package. See the publication describing the method at https://doi.org/10.1186/s13059-017-1334-8.
Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set.
Dot plots of single-cell RNA-seq data allow for an examination of the relationships between cell groupings (e.g. clusters) and marker gene expression. The scDotPlot package offers a unified approach to perform a hierarchical clustering analysis and add annotations to the columns and/or rows of a scRNA-seq dot plot. It works with SingleCellExperiment and Seurat objects as well as data frames.
It is an easy-to-use GUI using disease information for detecting tumor/normal sample discriminating gene sets from differentially expressed genes. Our approach is based on an iterative algorithm filtering genes with disease ontology enrichment analysis and wilk and wilks lambda criterion connected to SVM classification model construction. Along with gene set extraction, SVMDO also provides individual prognostic marker detection. The algorithm is designed for FPKM and RPKM normalized RNA-Seq transcriptome datasets.
This package provides a package containing an environment representing the Sugar_Cane.cdf file.
simPIC is a package for simulating single-cell ATAC-seq count data. It provides a user-friendly, well documented interface for data simulation. Functions are provided for parameter estimation, realistic scATAC-seq data simulation, and comparing real and simulated datasets.
The scRNAseqApp is a Shiny app package designed for interactive visualization of single-cell data. It is an enhanced version derived from the ShinyCell, repackaged to accommodate multiple datasets. The app enables users to visualize data containing various types of information simultaneously, facilitating comprehensive analysis. Additionally, it includes a user management system to regulate database accessibility for different users.
This package contains 13 micro array data results from a serum stimulation experiment.
This is an ExperimentHub package that provides access to the data generated and analyzed in the [smoking-nicotine-mouse](https://github.com/LieberInstitute/smoking-nicotine-mouse/) LIBD project. The datasets contain the expression data of mouse genes, transcripts, exons, and exon-exon junctions across 208 samples from pup and adult mouse brain, and adult blood, that were exposed to nicotine, cigarette smoke, or controls. They also contain relevant metadata of these samples and gene expression features, such QC metrics, if they were used after filtering steps and also if the features were differently expressed in the different experiments.
This package provides functions for differential chromatin interaction analysis between two single-cell Hi-C data groups. It includes tools for imputation, normalization, and differential analysis of chromatin interactions. The package implements pooling techniques for imputation and offers methods to normalize and test for differential interactions across single-cell Hi-C datasets.
This Package utilizes a Semi-parametric Differential Abundance/expression analysis (SDA) method for metabolomics and proteomics data from mass spectrometry as well as single-cell RNA sequencing data. SDA is able to robustly handle non-normally distributed data and provides a clear quantification of the effect size.