Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package provides RPPA datasets from The Cancer Genome Atlas Project for all available cohorts types from http://gdac.broadinstitute.org/. Data format is explained here https://wiki.nci.nih.gov/display/TCGA/Protein+Array +Data+Format+Specification?src=search.
Affymetrix Affymetrix RG_U34B Array annotation data (chip rgu34b) assembled using data from public repositories.
Statistical methods for detection of differential splicing (differential exon usage) in RNA-seq and exon microarray data, using L1-regularization (lasso) to improve power.
This package contains the Rattus.norvegicus object to access data from several related annotation packages.
This package provides a package containing an environment representing the RAE230B.CDF file.
Combine ideas of log-linear analysis of contingency table, flexible response function estimation and empirical Bayes dispersion estimation for explorative visualization of microbiome datasets. The package includes unconstrained as well as constrained analysis. In addition, diagnostic plot to detect lack of fit are available.
RNA-Seq is currently used routinely, and it provides accurate information on gene transcription. However, the method cannot accurately estimate duplicated genes expression. Several strategies have been previously used, but all of them provide biased results. With Rmmquant, if a read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes. Rmmquant is a drop-in replacement of the widely used tools findOverlaps and featureCounts that handles multi-mapping reads in an unabiased way.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RN-U34\_probe\_tab.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RG-U34B\_probe\_tab.
Base annotation databases for rat, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
This package provides functions to summarize DNA methylation data using regional principal components. Regional principal components are computed using principal components analysis within genomic regions to summarize the variability in methylation levels across CpGs. The number of principal components is chosen using either the Marcenko-Pasteur or Gavish-Donoho method to identify relevant signal in the data.
ROSeq - A rank based approach to modeling gene expression with filtered and normalized read count matrix. ROSeq takes filtered and normalized read matrix and cell-annotation/condition as input and determines the differentially expressed genes between the contrasting groups of single cells. One of the input parameters is the number of cores to be used.
Various databases of microRNA Targets.
The package is the R-version of the C-based software \boldCASPAR (Kaderali,2006: \urlhttp://bioinformatics.oxfordjournals.org/content/22/12/1495). It is meant to help predict survival times in the presence of high-dimensional explanatory covariates. The model is a piecewise baseline hazard Cox regression model with an Lq-norm based prior that selects for the most important regression coefficients, and in turn the most relevant covariates for survival analysis. It was primarily tried on gene expression and aCGH data, but can be used on any other type of high-dimensional data and in disciplines other than biology and medicine.
RLassoCox is a package that implements the RLasso-Cox model proposed by Wei Liu. The RLasso-Cox model integrates gene interaction information into the Lasso-Cox model for accurate survival prediction and survival biomarker discovery. It is based on the hypothesis that topologically important genes in the gene interaction network tend to have stable expression changes. The RLasso-Cox model uses random walk to evaluate the topological weight of genes, and then highlights topologically important genes to improve the generalization ability of the Lasso-Cox model. The RLasso-Cox model has the advantage of identifying small gene sets with high prognostic performance on independent datasets, which may play an important role in identifying robust survival biomarkers for various cancer types.
This package provides an R wrapper for BWA alignment algorithms. Both BWA-backtrack and BWA-MEM are available. Convenience function to build a BWA index from a reference genome is also provided. Currently not supported for Windows machines.
Data such as is contained in the two R data files in this package are required for the RITAN package examples. Users are highly encouraged to use their own or additional resources in conjunction with RITANdata. See the RITAN vignettes and RITAN.md for more information, such as gathering more up-to-date annotation data.
The package provides a method to infer the set of proteins that are more probably to work together to maintain chormatin interaction given a ChIA-PET experiment results.
Package provides CNV (based on Merge snp) datasets from The Cancer Genome Atlas Project for all cohorts types from http://gdac.broadinstitute.org/. Data format is explained here https://wiki.nci.nih.gov/display/TCGA/Retrieving +Data+Using+the+Data+Matrix. Data from 2015-11-01 snapshot.
Affymetrix rta10 annotation data (chip rta10transcriptcluster) assembled using data from public repositories.
This package provides a package containing an environment representing the RG_U34C.cdf file.
The package provides functions to read raw RT-qPCR data of different platforms.
This package provides a transcriptional regulatory network (TRN) consists of a collection of transcription factors (TFs) and the regulated target genes. TFs are regulators that recognize specific DNA sequences and guide the expression of the genome, either activating or repressing the expression the target genes. The set of genes controlled by the same TF forms a regulon. This package provides classes and methods for the reconstruction of TRNs and analysis of regulons.
This package provides a collection of methods for performing random rotations on high-dimensional, normally distributed data (e.g. microarray or RNA-seq data) with batch structure. The random rotation approach allows exact testing of dependent test statistics with linear models following arbitrary batch effect correction methods.