Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Cuddy-Della valle index gives the degree of instability present in the data by accommodating the effect of a trend. The adjusted R squared value of the best fitted model is chosen. The index is obtained by multiplying the coefficient of variation with square root of one minus the adjusted R-squared value. This package has been developed using concept of Shankar et al. (2022)<doi:10.3389/fsufs.2023.1208898>.
This package performs Correspondence Analysis on the given dataframe and plots the results in a scatterplot that emphasizes the geometric interpretation aspect of the analysis, following Borg-Groenen (2005) and Yelland (2010). It is particularly useful for highlighting the relationships between a selected row (or column) category and the column (or row) categories. See Borg-Groenen (2005, ISBN:978-0-387-28981-6); Yelland (2010) <doi:10.3888/tmj.12-4>.
Quickly estimate the net growth rate of a population or clone whose growth can be approximated by a birth-death branching process. Input should be phylogenetic tree(s) of clone(s) with edge lengths corresponding to either time or mutations. Based on coalescent results in Johnson et al. (2023) <doi:10.1093/bioinformatics/btad561>. Simulation techniques as well as growth rate methods build on prior work from Lambert A. (2018) <doi:10.1016/j.tpb.2018.04.005> and Stadler T. (2009) <doi:10.1016/j.jtbi.2009.07.018>.
Easily cache and retrieve computation results. The package works seamlessly across interactive R sessions, R scripts and Rmarkdown documents.
This package implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) <DOI:10.5705/ss.202016.0403> for stochastic and deterministic simulators. Additive and multiplicative discrepancy models are currently supported. See <http://www.matthewpratola.com/software> for more information and examples.
This package provides different datasets parsed from Drugbank <https://www.drugbank.ca/covid-19> database using dbparser package. It is a smaller version from dbdataset package. It contains only information about COVID-19 possible treatment.
Given the hypothesis of a bi-modal distribution of cells for each marker, the algorithm constructs a binary tree, the nodes of which are subpopulations of cells. At each node, observed cells and markers are modeled by both a family of normal distributions and a family of bi-modal normal mixture distributions. Splitting is done according to a normalized difference of AIC between the two families. Method is detailed in: Commenges, Alkhassim, Gottardo, Hejblum & Thiebaut (2018) <doi: 10.1002/cyto.a.23601>.
Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day. Glycemic variability, also known as glucose variability, is an established risk factor for hypoglycemia (Kovatchev) and has been shown to be a risk factor in diabetes complications. Over 20 metrics of glycemic variability have been identified. Here, we provide functions to calculate glucose summary metrics, glucose variability metrics (as defined in clinical publications), and visualizations to visualize trends in CGM data. Cho P, Bent B, Wittmann A, et al. (2020) <https://diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract> American Diabetes Association (2020) <https://professional.diabetes.org/diapro/glucose_calc> Kovatchev B (2019) <doi:10.1177/1932296819826111> Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3> Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017> Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.
Calculate some statistics aiming to help analyzing the clustering tendency of given data. In the first version, Hopkins statistic is implemented. See Hopkins and Skellam (1954) <doi:10.1093/oxfordjournals.aob.a083391>.
An interactive document on the topic of cluster analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/ClusterAnalysis/>.
This package provides methods and tools for performing multistep-ahead time series forecasting using conformal prediction methods including classical conformal prediction, adaptive conformal prediction, conformal PID (Proportional-Integral-Derivative) control, and autocorrelated multistep-ahead conformal prediction. The methods were described by Wang and Hyndman (2024) <doi:10.48550/arXiv.2410.13115>.
This package provides a generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on R packages rxode2 and mrgsolve'. CAMPSIS provides an abstraction layer over the underlying processes of writing a PK/PD model, assembling a custom dataset and running a simulation. CAMPSIS has a strong dependency to the R package campsismod', which allows to read/write a model from/to files and adapt it further on the fly in the R environment. Package campsis allows the user to assemble a dataset in an intuitive manner. Once the userâ s dataset is ready, the package is in charge of preparing the simulation, calling rxode2 or mrgsolve (at the user's choice) and returning the results, for the given model, dataset and desired simulation settings.
This package provides an interactive shiny web application for constructing, analyzing, and visualizing composite indices from multidimensional datasets. Users can upload or select indicator data, group variables into logical categories, apply normalization and weighting methods (such as equal or custom schemes), and compute aggregate composite indices. The shiny interface includes tools for exploring results through tables, plots, and data exports, making it useful for researchers, policymakers, and analysts interested in index-based evaluations.
Download imagery tiles to a standard cache and load the data into raster objects. Facilities for AWS terrain <https://registry.opendata.aws/terrain-tiles/> terrain and Mapbox <https://www.mapbox.com/> servers are provided.
Data package for the supplementary data in Prem et al. (2017) <doi:10.1371/journal.pcbi.1005697> and Prem et al. <doi:10.1371/journal.pcbi.1009098>. Provides easy access to contact data for 177 countries, for use in epidemiological, demographic or social sciences research.
This package provides a set of functions to fit a boosting conditional logit model.
Random sampling from distributions with user-specified population covariance matrix. Marginal information may be fully specified, for which the package implements the VITA (VIne-To-Anything) algorithm Grønneberg and Foldnes (2017) <doi:10.1007/s11336-017-9569-6>. See also Grønneberg, Foldnes and Marcoulides (2022) <doi:10.18637/jss.v102.i03>. Alternatively, marginal skewness and kurtosis may be specified, for which the package implements the IG (independent generator) and PLSIM (piecewise linear) algorithms, see Foldnes and Olsson (2016) <doi:10.1080/00273171.2015.1133274> and Foldnes and Grønneberg (2021) <doi:10.1080/10705511.2021.1949323>, respectively.
Trading of Condor Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Interface to the Google Cloud Machine Learning Platform <https://cloud.google.com/vertex-ai>, which provides cloud tools for training machine learning models.
This package provides a daily summary of the Coronavirus (COVID-19) cases in Italy by country, region and province level. Data source: Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile <https://www.protezionecivile.it/>.
This package implements parametric (Direct) regression methods for modeling cumulative incidence functions (CIFs) in the presence of competing risks. Methods include the direct Gompertz-based approach and generalized regression models as described in Jeong and Fine (2006) <doi:10.1111/j.1467-9876.2006.00532.x> and Jeong and Fine (2007) <doi:10.1093/biostatistics/kxj040>. The package facilitates maximum likelihood estimation, variance computation, with applications to clinical trials and survival analysis.
Calculate with spectral properties of light sources, materials, cameras, eyes, and scanners. Build complex systems from simpler parts using a spectral product algebra. For light sources, compute CCT, CRI, SSI, and IES TM-30 reports. For object colors, compute optimal colors and Logvinenko coordinates. Work with the standard CIE illuminants and color matching functions, and read spectra from text files, including CGATS files. Estimate a spectrum from its response. A user guide and 9 vignettes are included.
This package provides a Bayesian approach to using predictive probability in an ANOVA construct with a continuous normal response, when threshold values must be obtained for the question of interest to be evaluated as successful (Sieck and Christensen (2021) <doi:10.1002/qre.2802>). The Bayesian Mission Mean (BMM) is used to evaluate a question of interest (that is, a mean that randomly selects combination of factor levels based on their probability of occurring instead of averaging over the factor levels, as in the grand mean). Under this construct, in contrast to a Gibbs sampler (or Metropolis-within-Gibbs sampler), a two-stage sampling method is required. The nested sampler determines the conditional posterior distribution of the model parameters, given Y, and the outside sampler determines the marginal posterior distribution of Y (also commonly called the predictive distribution for Y). This approach provides a sample from the joint posterior distribution of Y and the model parameters, while also accounting for the threshold value that must be obtained in order for the question of interest to be evaluated as successful.
Converts any word, sentence or speech into Trump's infamous "covfefe" format. Reference: <https://www.nytimes.com/2017/05/31/us/politics/covfefe-trump-twitter.html>. Inspiration thanks to: <https://codegolf.stackexchange.com/questions/123685/covfefify-a-string>.