Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides RcisTarget databases: Gene-based motif rankings and annotation to transcription factors. This package contains a subset of 4.6k motifs (cisbp motifs), scored only within 500bp upstream and the TSS. See RcisTarget tutorial to download the full databases, containing 20k motifs and search space up to 10kbp around the TSS.
TrackViewer offers multi-omics analysis with web based tracks and lollipops. Visualize mapped reads along with annotation as track layers for NGS datasets such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data.
This package provides statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics.
The package ANF(Affinity Network Fusion) provides methods for affinity matrix construction and fusion as well as spectral clustering. This package is used for complex patient clustering by integrating multi-omic data through affinity network fusion.
This package provides an SQL-based mass spectrometry (MS) data backend supporting also storage and handling of very large data sets. Objects from this package are supposed to be used with the Spectra Bioconductor package. Through the MsBackendSql with its minimal memory footprint, this package thus provides an alternative MS data representation for very large or remote MS data sets.
This library contains functions that calculate various statistics of differential expression for microarray data, including t statistics, fold change, F statistics, SAM, moderated t and F statistics and B statistics. It also implements a new methodology called DEDS (Differential Expression via Distance Summary), which selects differentially expressed genes by integrating and summarizing a set of statistics using a weighted distance approach.
Genome-wide association studies (GWAS) are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. The R package SNPRelate provides a binary format for single-nucleotide polymorphism (SNP) data in GWAS utilizing CoreArray Genomic Data Structure (GDS) data files. The GDS format offers the efficient operations specifically designed for integers with two bits, since a SNP could occupy only two bits. SNPRelate is also designed to accelerate two key computations on SNP data using parallel computing for multi-core symmetric multiprocessing computer architectures: Principal Component Analysis (PCA) and relatedness analysis using Identity-By-Descent measures. The SNP GDS format is also used by the GWASTools package with the support of S4 classes and generic functions. The extended GDS format is implemented in the SeqArray package to support the storage of single nucleotide variations (SNVs), insertion/deletion polymorphism (indel) and structural variation calls in whole-genome and whole-exome variant data.
This package provides Escherichia coli full genomes for several strains as provided by NCBI on 2008/08/05 and stored in Biostrings objects.
This package implements clustering of microarray gene expression profiles according to functional annotations. For each term genes are annotated to, splits into two subclasses are computed and a significance of the supporting gene set is determined.
This package provides a collection of tools for cancer genomic data clustering analyses, including those for single cell RNA-seq. Cell clustering and feature gene selection analysis employ Bayesian (and maximum likelihood) non-negative matrix factorization (NMF) algorithm. Input data set consists of RNA count matrix, gene, and cell bar code annotations. Analysis outputs are factor matrices for multiple ranks and marginal likelihood values for each rank. The package includes utilities for downstream analyses, including meta-gene identification, visualization, and construction of rank-based trees for clusters.
This package provides an implementation of the BRGE's (Bioinformatic Research Group in Epidemiology from Center for Research in Environmental Epidemiology) MultiDataSet and ResultSet. MultiDataSet is designed for integrating multi omics data sets and ResultSet is a container for omics results. This package contains base classes for MEAL and rexposome packages.
r-kegggraph is an interface between Kegg Pathway database and graph object as well as a collection of tools to analyze, dissect and visualize these graphs. It parses the regularly updated kgml (Kegg XML) files into graph models maintaining all essential pathway attributes. The package offers functionalities including parsing, graph operation, visualization and etc.
This package provides many functions for computing the nonparametric maximum likelihood estimator (NPMLE) for censored and truncated data.
Explore, diagnose, and compare variant calls using filters. The VariantTools package supports a workflow for loading data, calling single sample variants and tumor-specific somatic mutations or other sample-specific variant types (e.g., RNA editing). Most of the functions operate on alignments (BAM files) or datasets of called variants. The user is expected to have already aligned the reads with a separate tool, e.g., GSNAP via gmapR.
This package provides functions for annotation-agnostic differential expression analysis of RNA-seq data. Two implementations of the DER Finder approach are included in this package:
single base-level F-statistics and
DER identification at the expressed regions-level.
The DER Finder approach can also be used to identify differentially bounded ChIP-seq peaks.
This package provides an interface to the samtools, bcftools, and tabix utilities for manipulating SAM (Sequence Alignment / Map), FASTA, binary variant call (BCF) and compressed indexed tab-delimited (tabix) files.
This package provides a method for finding an enrichment of cancer simple somatic mutations (SNVs and Indels) in functional elements across the human genome. ActiveDriverWGS detects coding and noncoding driver elements using whole genome sequencing data.
Independent hypothesis weighting (IHW) is a multiple testing procedure that increases power compared to the method of Benjamini and Hochberg by assigning data-driven weights to each hypothesis. The input to IHW is a two-column table of p-values and covariates. The covariate can be any continuous-valued or categorical variable that is thought to be informative on the statistical properties of each hypothesis test, while it is independent of the p-value under the null hypothesis.
The ASAFE package contains a collection of functions that can be used to carry out an EM (Expectation–maximization) algorithm to estimate ancestry-specific allele frequencies for a bi-allelic genetic marker, e.g. an SNP (single nucleotide polymorphism) from genotypes and ancestry pairs.
The genome is divided into non-overlapping fixed-sized bins, number of sequence reads in each counted, adjusted with a simultaneous two-dimensional loess correction for sequence mappability and GC content, and filtered to remove spurious regions in the genome. Downstream steps of segmentation and calling are also implemented via packages DNAcopy and CGHcall, respectively.
This package provides processed and raw count data for single-cell RNA sequencing. In addition, this package offers single-cell ATAC-seq, and seqFISH (spatial transcriptomic) experiments performed along a timecourse of mouse gastrulation and early organogenesis.
This package defines classes for "class discovery" in the OOMPA project. Class discovery primarily consists of unsupervised clustering methods with attempts to assess their statistical significance.
Single-cell RNA-seq (scRNA-seq) is widely used to investigate the composition of complex tissues since the technology allows researchers to define cell-types using unsupervised clustering of the transcriptome. However, due to differences in experimental methods and computational analyses, it is often challenging to directly compare the cells identified in two different experiments. scmap is a method for projecting cells from a scRNA-seq experiment onto the cell-types or individual cells identified in a different experiment.
This package implements a variety of low-level analyses of single-cell RNA-seq data. Methods are provided for normalization of cell-specific biases, assignment of cell cycle phase, and detection of highly variable and significantly correlated genes.