Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit (using Bayesian methods) and simulate mixtures of univariate and bivariate angular distributions. Chakraborty and Wong (2021) <doi:10.18637/jss.v099.i11>.
This package provides an integrated data management solution for assets installed via the Biobricks.ai platform. Streamlines the process of loading and interacting with diverse datasets in a consistent manner. A list of bricks is available at <https://status.biobricks.ai>. Documentation for Biobricks.ai is available at <https://docs.biobricks.ai>.
Test the robustness of a user's Qualitative Comparative Analysis solutions to randomness, using the bootstrapped assessment: baQCA(). This package also includes a function that provides recommendations for improving solutions to reach typical significance levels: brQCA(). Data included come from McVeigh et al. (2014) <doi:10.1177/0003122414534065>.
Box-Cox-type transformations for linear and logistic models with random effects using non-parametric profile maximum likelihood estimation, as introduced in Almohaimeed (2018) <http://etheses.dur.ac.uk/12831/> and Almohaimeed and Einbeck (2022) <doi:10.1177/1471082X20966919>. The main functions are optim.boxcox() for linear models with random effects and boxcoxtype() for logistic models with random effects.
This package performs BTLLasso as described by Schauberger and Tutz (2019) <doi:10.18637/jss.v088.i09> and Schauberger and Tutz (2017) <doi:10.1177/1471082X17693086>. BTLLasso is a method to include different types of variables in paired comparison models and, therefore, to allow for heterogeneity between subjects. Variables can be subject-specific, object-specific and subject-object-specific and can have an influence on the attractiveness/strength of the objects. Suitable L1 penalty terms are used to cluster certain effects and to reduce the complexity of the models.
Bayesian model and associated tools for generating estimates of total naloxone kit numbers distributed and used from naloxone kit orders data. Provides functions for generating simulated data of naloxone kit use and functions for generating samples from the posterior.
Make some distributions from the C++ library Boost available in R'. In addition, the normal-inverse Gaussian distribution and the generalized inverse Gaussian distribution are provided. The distributions are represented by R6 classes. The method to sample from the generalized inverse Gaussian distribution is the one given in "Random variate generation for the generalized inverse Gaussian distribution" Luc Devroye (2012) <doi:10.1007/s11222-012-9367-z>.
Unified and user-friendly framework for using new distributional representations of biosensors data in different statistical modeling tasks: regression models, hypothesis testing, cluster analysis, visualization, and descriptive analysis. Distributional representations are a functional extension of compositional time-range metrics and we have used them successfully so far in modeling glucose profiles and accelerometer data. However, these functional representations can be used to represent any biosensor data such as ECG or medical imaging such as fMRI. Matabuena M, Petersen A, Vidal JC, Gude F. "Glucodensities: A new representation of glucose profiles using distributional data analysis" (2021) <doi:10.1177/0962280221998064>.
It contains some example datasets used in bibliometrix'. The data are bibliographic datasets exported from the SCOPUS (<https://scopus.com>) and Clarivate Analytics Web of Science (<https://www.webofscience.com/>) databases. They can be used to test the different features of the package bibliometrix (<https://bibliometrix.org>).
This package provides a method to filter correlation and covariance matrices by averaging bootstrapped filtered hierarchical clustering and boosting. See Ch. Bongiorno and D. Challet, Covariance matrix filtering with bootstrapped hierarchies (2020) <arXiv:2003.05807> and Ch. Bongiorno and D. Challet, Reactive Global Minimum Variance Portfolios with k-BAHC covariance cleaning (2020) <arXiv:2005.08703>.
This package provides datasets and functions used for analysis and visualizations in the Bayes Rules! book (<https://www.bayesrulesbook.com>). The package contains a set of functions that summarize and plot Bayesian models from some conjugate families and another set of functions for evaluation of some Bayesian models.
Full implementation of the 28 distributions introduced as benchmarks for nonparametric density estimation by Berlinet and Devroye (1994) <https://hal.science/hal-03659919>. Includes densities, cdfs, quantile functions and generators for samples as well as additional information on features of the densities. Also contains the 4 histogram densities used in Rozenholc/Mildenberger/Gather (2010) <doi:10.1016/j.csda.2010.04.021>.
Estimation of latent variable models using Bayesian methods. Currently estimates the loglinear cognitive diagnosis model of Henson, Templin, and Willse (2009) <doi:10.1007/s11336-008-9089-5>.
Network meta-analyses using Bayesian framework following Dias et al. (2013) <DOI:10.1177/0272989X12458724>. Based on the data input, creates prior, model file, and initial values needed to run models in rjags'. Able to handle binomial, normal and multinomial arm-level data. Can handle multi-arm trials and includes methods to incorporate covariate and baseline risk effects. Includes standard diagnostics and visualization tools to evaluate the results.
Bayesian analysis of luminescence data and C-14 age estimates. Bayesian models are based on the following publications: Combes, B. & Philippe, A. (2017) <doi:10.1016/j.quageo.2017.02.003> and Combes et al. (2015) <doi:10.1016/j.quageo.2015.04.001>. This includes, amongst others, data import, export, application of age models and palaeodose model.
Fit computational and measurement models using full Bayesian inference. The package provides a simple and accessible interface by translating complex domain-specific models into brms syntax, a powerful and flexible framework for fitting Bayesian regression models using Stan'. The package is designed so that users can easily apply state-of-the-art models in various research fields, and so that researchers can use it as a new model development framework. References: Frischkorn and Popov (2023) <doi:10.31234/osf.io/umt57>.
Trading of Butterfly Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.
This package provides functions to fit, via Expectation-Maximization (EM) algorithm, the Bessel and Beta regressions to a data set with a bounded continuous response variable. The Bessel regression is a new and robust approach proposed in the literature. The EM version for the well known Beta regression is another major contribution of this package. See details in the references Barreto-Souza, Mayrink and Simas (2022) <doi:10.1111/anzs.12354> and Barreto-Souza, Mayrink and Simas (2020) <arXiv:2003.05157>.
Estimation of association between disease or death counts (e.g. COVID-19) and socio-environmental risk factors using a zero-inflated Bayesian spatiotemporal model. Non-spatiotemporal models and/or models without zero-inflation are also included for comparison. Functions to produce corresponding maps are also included. See Chakraborty et al. (2022) <doi:10.1007/s13253-022-00487-1> for more details on the method.
This package implements two algorithms of detecting Bull and Bear markets in stock prices: the algorithm of Pagan and Sossounov (2002, <doi:10.1002/jae.664>) and the algorithm of Lunde and Timmermann (2004, <doi:10.1198/073500104000000136>). The package also contains functions for printing out the dating of the Bull and Bear states of the market, the descriptive statistics of the states, and functions for plotting the results. For the sake of convenience, the package includes the monthly and daily data on the prices (not adjusted for dividends) of the S&P 500 stock market index.
Due to a limited availability of observed high-resolution precipitation records with adequate length, simulations with stochastic precipitation models are used to generate series for subsequent studies [e.g. Khaliq and Cunmae, 1996, <doi:10.1016/0022-1694(95)02894-3>, Vandenberghe et al., 2011, <doi:10.1029/2009WR008388>]. This package contains an R implementation of the original Bartlett-Lewis rectangular pulse model (BLRPM), developed by Rodriguez-Iturbe et al. (1987) <doi:10.1098/rspa.1987.0039>. It contains a function for simulating a precipitation time series based on storms and cells generated by the model with given or estimated model parameters. Additionally BLRPM parameters can be estimated from a given or simulated precipitation time series. The model simulations can be plotted in a three-layer plot including an overview of generated storms and cells by the model (which can also be plotted individually), a continuous step-function and a discrete precipitation time series at a chosen aggregation level.
This is an implementation of BART:Bayesian Additive Regression Trees, by Chipman, George, McCulloch (2010).
This package provides methods for Bayesian parameter estimation and forecasting in epidemiological models. Functions enable model fitting using Bayesian methods and generate forecasts with uncertainty quantification. Implements approaches described in <doi:10.48550/arXiv.2411.05371> and <doi:10.1002/sim.9164>.