Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform fundamental analyses using Bayesian parametric and non-parametric inference (regression, anova, 1 and 2 sample inference, non-parametric tests, etc.). (Practically) no Markov chain Monte Carlo (MCMC) is used; all exact finite sample inference is completed via closed form solutions or else through posterior sampling automated to ensure precision in interval estimate bounds. Diagnostic plots for model assessment, and key inferential quantities (point and interval estimates, probability of direction, region of practical equivalence, and Bayes factors) and model visualizations are provided. Bayes factors are computed either by the Savage Dickey ratio given in Dickey (1971) <doi:10.1214/aoms/1177693507> or by Chib's method as given in xxx. Interpretations are from Kass and Raftery (1995) <doi:10.1080/01621459.1995.10476572>. ROPE bounds are based on discussions in Kruschke (2018) <doi:10.1177/2515245918771304>. Methods for determining the number of posterior samples required are described in Doss et al. (2014) <doi:10.1214/14-EJS957>. Bayesian model averaging is done in part by Feldkircher and Zeugner (2015) <doi:10.18637/jss.v068.i04>. Methods for contingency table analysis is described in Gunel et al. (1974) <doi:10.1093/biomet/61.3.545>. Variational Bayes (VB) methods are described in Salimans and Knowles (2013) <doi:10.1214/13-BA858>. Mediation analysis uses the framework described in Imai et al. (2010) <doi:10.1037/a0020761>. The loss-likelihood bootstrap used in the non-parametric regression modeling is described in Lyddon et al. (2019) <doi:10.1093/biomet/asz006>. Non-parametric survival methods are described in Qing et al. (2023) <doi:10.1002/pst.2256>. Methods used for the Bayesian Wilcoxon signed-rank analysis is given in Chechile (2018) <doi:10.1080/03610926.2017.1388402> and for the Bayesian Wilcoxon rank sum analysis in Chechile (2020) <doi:10.1080/03610926.2018.1549247>. Correlation analysis methods are carried out by Barch and Chechile (2023) <doi:10.32614/CRAN.package.DFBA>, and described in Lindley and Phillips (1976) <doi:10.1080/00031305.1976.10479154> and Chechile and Barch (2021) <doi:10.1016/j.jmp.2021.102638>. See also Chechile (2020, ISBN: 9780262044585).
BayesX performs Bayesian inference in structured additive regression (STAR) models. The R package BayesXsrc provides the BayesX command line tool for easy installation. A convenient R interface is provided in package R2BayesX.
Four methods for mediation analysis with missing data: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included. Bootstrap confidence intervals for mediation effects are obtained. The robust method is also implemented for TS-ML. Since version 1.4, bmem adds the capability to conduct power analysis for mediation models. Details about the methods used can be found in these articles. Zhang and Wang (2003) <doi:10.1007/s11336-012-9301-5>. Zhang (2014) <doi:10.3758/s13428-013-0424-0>.
Different adjustment methods for batch effects in biomarker data, such as from tissue microarrays. Some methods attempt to retain differences between batches that may be due to between-batch differences in "biological" factors that influence biomarker values.
This package provides functions to compute pair-wise dissimilarities (distance matrices) and multiple-site dissimilarities, separating the turnover and nestedness-resultant components of taxonomic (incidence and abundance based), functional and phylogenetic beta diversity.
Utilities dedicated to the analysis of biological sequences by metric MultiDimensional Scaling with projection of supplementary data. It contains functions for reading multiple sequence alignment files, calculating distance matrices, performing metric multidimensional scaling and visualizing results.
This package provides functions for data augmentation using the Bayesian discount prior method for single arm and two-arm clinical trials, as described in Haddad et al. (2017) <doi:10.1080/10543406.2017.1300907>. The discount power prior methodology was developed in collaboration with the The Medical Device Innovation Consortium (MDIC) Computer Modeling & Simulation Working Group.
The Multivariate Generalized Autoregressive Conditional Heteroskedasticity (MGARCH) models are used for modelling the volatile multivariate data sets. In this package a variant of MGARCH called BEKK (Baba, Engle, Kraft, Kroner) proposed by Engle and Kroner (1995) <http://www.jstor.org/stable/3532933> has been used to estimate the bivariate time series data using Bayesian technique.
The bullwhipgame is an educational game that has as purpose the illustration and exploration of the bullwhip effect,i.e, the increase in demand variability along the supply chain. Marchena Marlene (2010) <arXiv:1009.3977>.
Parse a BibTeX file to a data.frame to make it accessible for further analysis and visualization.
Bayesian Model Averaging for linear models with a wide choice of (customizable) priors. Built-in priors include coefficient priors (fixed, hyper-g and empirical priors), 5 kinds of model priors, moreover model sampling by enumeration or various MCMC approaches. Post-processing functions allow for inferring posterior inclusion and model probabilities, various moments, coefficient and predictive densities. Plotting functions available for posterior model size, MCMC convergence, predictive and coefficient densities, best models representation, BMA comparison. Also includes Bayesian normal-conjugate linear model with Zellner's g prior, and assorted methods.
This package provides tools for statistical analysis using the binscatter methods developed by Cattaneo, Crump, Farrell and Feng (2024a) <doi:10.48550/arXiv.1902.09608>, Cattaneo, Crump, Farrell and Feng (2024b) <https://nppackages.github.io/references/Cattaneo-Crump-Farrell-Feng_2024_NonlinearBinscatter.pdf> and Cattaneo, Crump, Farrell and Feng (2024c) <doi:10.48550/arXiv.1902.09615>. Binscatter provides a flexible way of describing the relationship between two variables based on partitioning/binning of the independent variable of interest. binsreg(), binsqreg() and binsglm() implement binscatter least squares regression, quantile regression and generalized linear regression respectively, with particular focus on constructing binned scatter plots. They also implement robust (pointwise and uniform) inference of regression functions and derivatives thereof. binstest() implements hypothesis testing procedures for parametric functional forms of and nonparametric shape restrictions on the regression function. binspwc() implements hypothesis testing procedures for pairwise group comparison of binscatter estimators. binsregselect() implements data-driven procedures for selecting the number of bins for binscatter estimation. All the commands allow for covariate adjustment, smoothness restrictions and clustering.
Prior transcription factor binding knowledge and target gene expression data are integrated in a Bayesian framework for functional cis-regulatory module inference. Using Gibbs sampling, we iteratively estimate transcription factor associations for each gene, regulation strength for each binding event and the hidden activity for each transcription factor.
The BAGofT assesses the goodness-of-fit of binary classifiers. Details can be found in Zhang, Ding and Yang (2021) <arXiv:1911.03063v2>.
The Bayesian MCMC estimation of parameters for Thomas-type cluster point process with various inhomogeneities. It allows for inhomogeneity in (i) distribution of parent points, (ii) mean number of points in a cluster, (iii) cluster spread. The package also allows for the Bayesian MCMC algorithm for the homogeneous generalized Thomas process. The cluster size is allowed to have a variance that is greater or less than the expected value (cluster sizes are over or under dispersed). Details are described in DvoŠák, RemeÅ¡, Beránek & MrkviÄ ka (2022) <arXiv: 10.48550/arXiv.2205.07946>.
This package provides functions to visualize combined action data in ggplot2'. Also provides functions for producing full BRAID analysis reports with custom layouts and aesthetics, using the BRAID method originally described in Twarog et al. (2016) <doi:10.1038/srep25523>.
This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.
Enables binary package installations on Linux distributions. Provides functions to manage packages via the distribution's package manager. Also provides transparent integration with R's install.packages() and a fallback mechanism. When installed as a system package, interacts with the system's package manager without requiring administrative privileges via an integrated D-Bus service; otherwise, uses sudo. Currently, the following backends are supported: DNF, APT, ALPM.
This package provides functions to fit, via Expectation-Maximization (EM) algorithm, the Bessel and Beta regressions to a data set with a bounded continuous response variable. The Bessel regression is a new and robust approach proposed in the literature. The EM version for the well known Beta regression is another major contribution of this package. See details in the references Barreto-Souza, Mayrink and Simas (2022) <doi:10.1111/anzs.12354> and Barreto-Souza, Mayrink and Simas (2020) <arXiv:2003.05157>.
Quantitative methods for benefit-risk analysis help to condense complex decisions into a univariate metric describing the overall benefit relative to risk. One approach is to use the multi-criteria decision analysis framework (MCDA), as in Mussen, Salek, and Walker (2007) <doi:10.1002/pds.1435>. Bayesian benefit-risk analysis incorporates uncertainty through posterior distributions which are inputs to the benefit-risk framework. The brisk package provides functions to assist with Bayesian benefit-risk analyses, such as MCDA. Users input posterior samples, utility functions, weights, and the package outputs quantitative benefit-risk scores. The posterior of the benefit-risk scores for each group can be compared. Some plotting capabilities are also included.
This package contains functions mainly focused to plotting bivariate maps.
Frequentist inference on adaptively generated data. The methods implemented are based on Zhan et al. (2021) <doi:10.48550/arXiv.2106.02029> and Hadad et al. (2021) <doi:10.48550/arXiv.1911.02768>. For illustration, several functions for simulating non-contextual and contextual adaptive experiments using Thompson sampling are also supplied.
This package provides a lightweight package to access spatial basemaps from open sources such as OpenStreetMap', Carto', Mapbox and others in R.
Implement in R interactive Circos-like visualizations of genomic data, to map information such as genetic variants, genomic fusions and aberrations to a circular genome, as proposed by the JavaScript library BioCircos.js', based on the JQuery and D3 technologies. The output is by default displayed in stand-alone HTML documents or in the RStudio viewer pane. Moreover it can be integrated in R Markdown documents and Shiny applications.