Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Integrating morphological modeling with machine learning to support structured decision-making (e.g., in management and consulting). The package enumerates a morphospace of feasible configurations and uses random forests to estimate class probabilities over that space, bridging deductive model exploration with empirical validation. It includes utilities for factorizing inputs, model training, morphospace construction, and an interactive shiny app for scenario exploration.
Fits multivariate (Brownian Motion, Early Burst, ACDC, Ornstein-Uhlenbeck and Shifts) models of continuous traits evolution on trees and time series. mvMORPH also proposes high-dimensional multivariate comparative tools (linear models using Generalized Least Squares and multivariate tests) based on penalized likelihood. See Clavel et al. (2015) <DOI:10.1111/2041-210X.12420>, Clavel et al. (2019) <DOI:10.1093/sysbio/syy045>, and Clavel & Morlon (2020) <DOI:10.1093/sysbio/syaa010>.
Multivariate functional principal component analysis via fast covariance estimation for multivariate sparse functional data or longitudinal data proposed by Li, Xiao, and Luo (2020) <doi: 10.1002/sta4.245>.
Nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. BRAULT Vincent, OUADAH Sarah, SANSONNET Laure and LEVY-LEDUC Celine (2017) <doi:10.1016/j.jmva.2017.12.005>.
Model fitting and simulation for Gaussian and logistic inner product MultiNeSS models for multiplex networks. The package implements a convex fitting algorithm with fully adaptive parameter tuning, including options for edge cross-validation. For more details see MacDonald et al. (2020).
Generalized Additive Model for Location, Scale and Shape (GAMLSS) with zero inflated beta (BEZI) family for analysis of microbiome relative abundance data (with various options for data transformation/normalization to address compositional effects) and random effects meta-analysis models for meta-analysis pooling estimates across microbiome studies are implemented. Random Forest model to predict microbiome age based on relative abundances of shared bacterial genera with the Bangladesh data (Subramanian et al 2014), comparison of multiple diversity indexes using linear/linear mixed effect models and some data display/visualization are also implemented. The reference paper is published by Ho NT, Li F, Wang S, Kuhn L (2019) <doi:10.1186/s12859-019-2744-2> .
This package provides a computationally efficient solution for generating optimal experimental designs in Accelerated Life Testing (ALT). Leveraging a Particle Swarm Optimization (PSO)-based hybrid algorithm, the package identifies optimal test plans that minimize estimation variance under specified failure models and stress profiles. For more detailed, see Lee et al. (2025), Optimal Robust Strategies for Accelerated Life Tests and Fatigue Testing of Polymer Composite Materials, submitted to Annals of Applied Statistics, <https://imstat.org/journals-and-publications/annals-of-applied-statistics/annals-of-applied-statistics-next-issues/>, and Hoang (2025), Model-Robust Minimax Design of Accelerated Life Tests via PSO-based Hybrid Algorithm, Master Thesis, Unpublished.
This package implements the algorithm of Remez (1962) for polynomial minimax approximation and of Cody et al. (1968) <doi:10.1007/BF02162506> for rational minimax approximation.
This package provides a simple way to memoize function results to improve performance by eliminating unnecessary computation or data retrieval activities.
Given the maximum available sample size (N) for an experiment, and the target levels of Type I and II error probabilities, this package designs a modified SPRT (MSPRT). For any designed MSPRT the package can also obtain its operating characteristics and implement the test for a given sequentially observed data. The MSPRT is defined in a manner very similar to Wald's initial proposal. The proposed test has shown evidence of reducing the average sample size required to perform statistical hypothesis tests at specified levels of significance and power. Currently, the package implements one-sample proportion tests, one and two-sample z tests, and one and two-sample t tests. A brief user guidance for this package is provided below. One can also refer to the supplemental information for the same.
This package performs the multiple testing procedures of Cox (2011) <doi:10.5170/CERN-2011-006> and Wong and Cox (2007) <doi:10.1080/02664760701240014>.
Compute similarities and distances between marked point processes.
Easy implementation of the MABAC multi-criteria decision method, that was introduced by PamuÄ ar and Ä iroviÄ in the work entitled: "The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)" - <doi:10.1016/j.eswa.2014.11.057> - which aimed to choose implements for logistics centers. This package receives data, preferably in a spreadsheet, reads it and applies the mathematical algorithms inherent to the MABAC method to generate a ranking with the optimal solution according to the established criteria, weights and type of criteria. The data will be normalized, weighted by the weights, the border area will be determined, the distances to this border area will be calculated and finally a ranking with the optimal option will be generated.
Plot the daily and cumulative number of downloads of your packages. It is designed to be slightly more convenient than the several similar programs. If you want to run this each morning, you do not need to keep typing in the names of your packages. Also, this combines the daily and cumulative counts in one run, you do not need to run separate programs to get both types of information.
Implementation of marginalized models for zero-inflated count data. This package provides a tool to implement an estimation algorithm for the marginalized count models, which directly makes inference on the effect of each covariate on the marginal mean of the outcome. The method involves the marginalized zero-inflated Poisson model described in Long et al. (2014) <doi:10.1002/sim.6293>.
This package provides a computational method developed for model-based analysis of alternative polyadenylation (APA) using 3 end-linked reads. It accurately assigns 3 RNA-seq reads to polyA sites through statistical modeling, and generates multiple statistics for APA analysis. Please also see Li WV, Zheng D, Wang R, Tian B (2021) <doi:10.1186/s13059-021-02429-5>.
Most multilevel methodologies can only model macro-micro multilevel situations in an unbiased way, wherein group-level predictors (e.g., city temperature) are used to predict an individual-level outcome variable (e.g., citizen personality). In contrast, this R package enables researchers to model micro-macro situations, wherein individual-level (micro) predictors (and other group-level predictors) are used to predict a group-level (macro) outcome variable in an unbiased way.
Deep Learning library that extends the mlr3 framework by building upon the torch package. It allows to conveniently build, train, and evaluate deep learning models without having to worry about low level details. Custom architectures can be created using the graph language defined in mlr3pipelines'.
Mask ranges based on expert knowledge or remote sensing layers. These tools can be combined to quantitatively and reproducibly generate a new map or to update an existing map. Methods include expert opinion and data-driven tools to generate thresholds for binary masks.
This package provides functions and S4 methods to create and manage discrete time Markov chains more easily. In addition functions to perform statistical (fitting and drawing random variates) and probabilistic (analysis of their structural proprieties) analysis are provided. See Spedicato (2017) <doi:10.32614/RJ-2017-036>. Some functions for continuous times Markov chains depend on the suggested ctmcd package.
Visualise admixture as pie charts on a projected map, admixture as traditional structure barplots or facet barplots, and scatter plots from genotype principal components analysis. A shiny app allows users to create admixture maps interactively. Jenkins TL (2024) <doi:10.1111/1755-0998.13943>.
Assessment of inconsistency in meta-analysis by calculating the Decision Inconsistency index (DI) and the Across-Studies Inconsistency (ASI) index. These indices quantify inconsistency taking into account outcome-level decision thresholds.
Tests for block-diagonal structure in symmetric matrices (e.g. correlation matrices) under the null hypothesis of exchangeable off-diagonal elements. As described in Segal et al. (2019), these tests can be useful for construct validation either by themselves or as a complement to confirmatory factor analysis. Monte Carlo methods are used to approximate the permutation p-value with Hubert's Gamma (Hubert, 1976) and a t-statistic. This package also implements the chi-squared statistic described by Steiger (1980). Please see Segal, et al. (2019) <doi:10.1007/s11336-018-9647-4> for more information.
Bindings for hierarchical regression models for use with the parsnip package. Models include longitudinal generalized linear models (Liang and Zeger, 1986) <doi:10.1093/biomet/73.1.13>, and mixed-effect models (Pinheiro and Bates) <doi:10.1007/978-1-4419-0318-1_1>.