Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Connect to the Less Annoying CRM API with ease to get your crm data in a clean and tidy format. Less Annoying CRM is a simple CRM built for small businesses, more information is available on their website <https://www.lessannoyingcrm.com/>.
LimeSurvey is Free/Libre Open Source Software for the development and administrations of online studies, using sophisticated tailoring capabilities to support multiple study designs (see <https://www.limesurvey.org>). This package supports programmatic creation of surveys that can then be imported into LimeSurvey', as well as user friendly import of responses from LimeSurvey studies.
This package provides a variety of ordination and community analyses useful in analysis of data sets in community ecology. Includes many of the common ordination methods, with graphical routines to facilitate their interpretation, as well as several novel analyses.
This package contains (1) event-related brain potential data recorded from 10 participants at electrodes Fz, Cz, Pz, and Oz (0--300 ms) in the context of Antoine Tremblay's PhD thesis (Tremblay, 2009); (2) ERP amplitudes at electrode Fz restricted to the 100 to 175 millisecond time window; and (3) plotting data generated from a linear mixed-effects model.
Wrapper functions for the implementation of lagged weighted quantile sum regression, as per Gennings et al (2020) <doi:10.1016/j.envres.2020.109529>.
Read, register and compare point sets from single molecule localization microscopy.
Helper functions to build SQL statements for dbGetQuery or dbSendQuery under program control. They are intended to increase speed of coding and to reduce coding errors. Arguments are carefully checked, in particular SQL identifiers such as names of tables or columns. More patterns will be added as required.
Plots empty Lexis grids, adds lifelines and highlights certain areas of the grid, like cohorts and age groups.
Data, scripts and code from chunks used as examples in the book "Learn R: As a Language" 1ed and 2ed by Pedro J. Aphalo. ISBN 9780367182533 (pbk 1ed); ISBN 9780367182557 (hbk 1ed); ISBN 9780429060342 (ebk 1ed).
Estimation of a multi-group count regression models (i.e., Poisson, negative binomial) with latent covariates. This packages provides two extensions compared to ordinary count regression models based on a generalized linear model: First, measurement models for the predictors can be specified allowing to account for measurement error. Second, the count regression can be simultaneously estimated in multiple groups with stochastic group weights. The marginal maximum likelihood estimation is described in Kiefer & Mayer (2020) <doi:10.1080/00273171.2020.1751027>.
An interface for the image processing program ImageJ', which allows a rapid digital image analysis for particle sizes. This package includes function to write an ImageJ macro which is optimized for a leaf area analysis by default.
Linear Liu regression coefficient's estimation and testing with different Liu related measures such as MSE, R-squared etc. REFERENCES i. Akdeniz and Kaciranlar (1995) <doi:10.1080/03610929508831585> ii. Druilhet and Mom (2008) <doi:10.1016/j.jmva.2006.06.011> iii. Imdadullah, Aslam, and Saima (2017) iv. Liu (1993) <doi:10.1080/03610929308831027> v. Liu (2001) <doi:10.1016/j.jspi.2010.05.030>.
Originally design to characterise Aqueous Two Phase Systems, LLSR provide a simple way to analyse experimental data and obtain phase diagram parameters, among other properties, systematically. The package will include (every other update) new functions in order to comprise useful tools in liquid-liquid extraction research.
Includes some procedures for latent variable modeling with a particular focus on multilevel data. The LAM package contains mean and covariance structure modelling for multivariate normally distributed data (mlnormal(); Longford, 1987; <doi:10.1093/biomet/74.4.817>), a general Metropolis-Hastings algorithm (amh(); Roberts & Rosenthal, 2001, <doi:10.1214/ss/1015346320>) and penalized maximum likelihood estimation (pmle(); Cole, Chu & Greenland, 2014; <doi:10.1093/aje/kwt245>).
Data used as examples in the loon package.
This package provides a stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a plant pathogen in a heterogeneous landscape to assess resistance deployment strategies. It is based on a spatial geometry for describing the landscape and allocation of different cultivars, a dispersal kernel for the dissemination of the pathogen, and a SEIR ('Susceptible-Exposed-Infectious-Removedâ ) structure with a discrete time step. It provides a useful tool to assess the performance of a wide range of deployment options with respect to their epidemiological, evolutionary and economic outcomes. Loup Rimbaud, Julien Papaïx, Jean-François Rey, Luke G Barrett, Peter H Thrall (2018) <doi:10.1371/journal.pcbi.1006067>.
Latent Class Analysis of phenotypic measurements in pedigrees and model selection based on one of two methods: likelihood-based cross-validation and Bayesian Information Criterion. Computation of individual and triplet child-parents weights in a pedigree is performed using an upward-downward algorithm. The model takes into account the familial dependence defined by the pedigree structure by considering that a class of a child depends on his parents classes via triplet-transition probabilities of the classes. The package handles the case where measurements are available on all subjects and the case where measurements are available only on symptomatic (i.e. affected) subjects. Distributions for discrete (or ordinal) and continuous data are currently implemented. The package can deal with missing data.
This package provides a way to fit Parsimonious Finite Mixtures of Multivariate Elliptical Leptokurtic-Normals. Two methods of estimation are implemented.
Computes power, or sample size or the detectable difference for a repeated measures model with attrition. It requires the variance covariance matrix of the observations but can compute this matrix for several common random effects models. See Diggle, P, Liang, KY and Zeger, SL (1994, ISBN:9780198522843).
Simplify the loading matrix in factor models using the l1 criterion as proposed in Freyaldenhoven (2025) <doi:10.21799/frbp.wp.2020.25>. Given a data matrix, find the rotation of the loading matrix with the smallest l1-norm and/or test for the presence of local factors with main function local_factors().
Compute and visualize using the visNetwork package all the bivariate correlations of a dataframe. Several and different types of correlation coefficients (Pearson's r, Spearman's rho, Kendall's tau, distance correlation, maximal information coefficient and equal-freq discretization-based maximal normalized mutual information) are used according to the variable couple type (quantitative vs categorical, quantitative vs quantitative, categorical vs categorical).
This package provides a robust collection of functions tailored for microbial ecology analysis, encompassing both data analysis and visualization. It introduces an encapsulation feature that streamlines the process into a summary object. With the initial configuration of this summary object, users can execute a wide range of analyses with a single line of code, requiring only two essential parameters for setup. The package delivers comprehensive outputs including analysis objects, statistical outcomes, and visualization-ready data, enhancing the efficiency of research workflows. Designed with user-friendliness in mind, it caters to both novices and seasoned researchers, offering an intuitive interface coupled with adaptable customization options to meet diverse analytical needs.
The package compiles functions for calculating prices of American put options with Least Squares Monte Carlo method. The option types are plain vanilla American put, Asian American put, and Quanto American put. The pricing algorithms include variance reduction techniques such as Antithetic Variates and Control Variates. Additional functions are given to derive "price surfaces" at different volatilities and strikes, create 3-D plots, quickly generate Geometric Brownian motion, and calculate prices of European options with Black & Scholes analytical solution.
Curated datasets from US Long Term Ecological Research sites.