Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs end-to-end analysis of gene clustersâ such as photosynthesis, carbon/nitrogen/sulfur cycling, carotenoid, antibiotic, or viral marker genes (e.g., capsid, polymerase, integrase)â from genomes and metagenomes. It parses Basic Local Alignment Search Tool (BLAST) results in tab-delimited format produced by tools like NCBI BLAST+ and Diamond BLASTp, filters Open Reading Frames (ORFs) by length, detects contiguous clusters of reference genes, optionally extracts genomic coordinates, merges functional annotations, and generates publication-ready arrow plots. The package works seamlessly with or without the coding sequences input and skips plotting when no functional groups are found. For more details see Li et al. (2023) <doi:10.1038/s41467-023-42193-7>.
Geostatistical modelling facilities using SpatRaster and SpatVector objects are provided. Non-Gaussian models are fit using INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>. The RandomFields package is available at <https://www.wim.uni-mannheim.de/schlather/publications/software>.
The geographical complexity of individual variables can be characterized by the differences in local attribute variables, while the common geographical complexity of multiple variables can be represented by fluctuations in the similarity of vectors composed of multiple variables. In spatial regression tasks, the goodness of fit can be improved by incorporating a geographical complexity representation vector during modeling, using a geographical complexity-weighted spatial weight matrix, or employing local geographical complexity kernel density. Similarly, in spatial sampling tasks, samples can be selected more effectively by using a method that weights based on geographical complexity. By optimizing performance in spatial regression and spatial sampling tasks, the spatial bias of the model can be effectively reduced.
Data sets included here are for use with package GEOmap. These include world map, USA map, Coso map, Japan Map.
Shiny application for the analysis of groundwater monitoring data, designed to work with simple time-series data for solute concentration and ground water elevation, but can also plot non-aqueous phase liquid (NAPL) thickness if required. Also provides the import of a site basemap in GIS shapefile format.
Focused on extracting important data from track points such as speed, distance, elevation difference and azimuth.(PLAZA, J. et al., 2022) <doi:10.1016/j.applanim.2022.105643>.
This package contains infrastructure for using mboost::gamboost() in order to estimate multistate models.
This package provides tools for downloading, processing, and reporting daily and finalized GreenFeed data.
This package creates bar plots with rounded corners using ggplot2'. The code in this package was adapted from a solution provided by Stack Overflow user sthoch in the following post <https://stackoverflow.com/questions/62176038/r-ggplot2-bar-chart-with-round-corners-on-top-of-bar>.
This package provides a general, flexible framework for estimating parameters and empirical sandwich variance estimator from a set of unbiased estimating equations (i.e., M-estimation in the vein of Stefanski & Boos (2002) <doi:10.1198/000313002753631330>). All examples from Stefanski & Boos (2002) are published in the corresponding Journal of Statistical Software paper "The Calculus of M-Estimation in R with geex" by Saul & Hudgens (2020) <doi:10.18637/jss.v092.i02>. Also provides an API to compute finite-sample variance corrections.
Analyze small-sample clustered or longitudinal data with binary outcome using modified generalized estimating equations (GEE) with bias-adjusted covariance estimator. The package provides any combination of three GEE methods and 12 covariance estimators.
Estimates the parameters of a GARCH-X model with exogenous covariates, performs hypothesis tests for the parameters returning the p-values, and uses False Discovery Rate p-value corrections to select the exogenous variables.
Neural networks are applied to create a density value function which approximates density values for a data source. The trained neural network is analyzed for different levels. For each level metric subspaces with density values above a level are determined. The obtained set of metric subspaces and the trained neural network are assembled into a data model. A prerequisite is the definition of a data source, the generation of generative data and the calculation of density values. These tasks are executed using package ganGenerativeData <https://cran.r-project.org/package=ganGenerativeData>.
Load polar volume and vertical profile data for aeroecological research directly into R. With getRad you can access data from several sources in Europe and the US and standardize it to facilitate further exploration in tools such as bioRad'.
Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure(Cabrera et al (2012) <doi:10.1534/g3.112.002618>). All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a circular genome according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher's combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permutated datasets above a pre-defined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.
The American Association Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) BioPharma Collaborative represents a multi-year, multi-institution effort to build a pan-cancer repository of linked clinico-genomic data. The genomic and clinical data are provided in multiple releases (separate releases for each cancer cohort with updates following data corrections), which are stored on the data sharing platform Synapse <https://www.synapse.org/>. The genieBPC package provides a seamless way to obtain the data corresponding to each release from Synapse and to prepare datasets for analysis.
This package provides additional display mediums for time series visualisations.
Several Goodness-of-Fit (GoF) tests for Copulae are provided. A new hybrid test, Zhang et al. (2016) <doi:10.1016/j.jeconom.2016.02.017> is implemented which supports all of the individual tests in the package, e.g. Genest et al. (2009) <doi:10.1016/j.insmatheco.2007.10.005>. Estimation methods for the margins are provided and all the tests support parameter estimation and predefined values. The parameters are estimated by pseudo maximum likelihood but if it fails the estimation switches automatically to inversion of Kendall's tau. For reproducibility of results, the functions support the definition of seeds. Also all the tests support automatized parallelization of the bootstrapping tasks. The package provides an interface to perform new GoF tests by submitting the test statistic.
Generalized meta-analysis is a technique for estimating parameters associated with a multiple regression model through meta-analysis of studies which may have information only on partial sets of the regressors. It estimates the effects of each variable while fully adjusting for all other variables that are measured in at least one of the studies. Using algebraic relationships between regression parameters in different dimensions, a set of moment equations is specified for estimating the parameters of a maximal model through information available on sets of parameter estimates from a series of reduced models available from the different studies. The specification of the equations requires a reference dataset to estimate the joint distribution of the covariates. These equations are solved using the generalized method of moments approach, with the optimal weighting of the equations taking into account uncertainty associated with estimates of the parameters of the reduced models. The proposed framework is implemented using iterated reweighted least squares algorithm for fitting generalized linear regression models. For more details about the method, please see pre-print version of the manuscript on generalized meta-analysis by Prosenjit Kundu, Runlong Tang and Nilanjan Chatterjee (2018) <doi:10.1093/biomet/asz030>.The current version (0.2.0) is updated to address some of the stability issues in the previous version (0.1).
This package provides a suite of tools for specifying and examining experimental designs related to choice response time models (e.g., the Diffusion Decision Model). This package allows users to define how experimental factors influence one or more model parameters using R-style formula syntax, while also checking the logical consistency of these associations. Additionally, it integrates with the ggdmc package, which employs Differential Evolution Markov Chain Monte Carlo (DE-MCMC) sampling to optimise model parameters. For further details on the model-building approach, see Heathcote, Lin, Reynolds, Strickland, Gretton, and Matzke (2019) <doi:10.3758/s13428-018-1067-y>.
This package provides a collection of several geoms to create graphics, using ggplot2 and the Cartesian coordinate system. You use the familiar mapping Grammar of Graphics without the need to do another transformation into polar coordinates.
This package provides functions to compute generalized eigenvalues and eigenvectors, the generalized Schur decomposition and the generalized Singular Value Decomposition of a matrix pair, using Lapack routines.
We implement various classical tests for the composite hypothesis of testing the fit to the family of gamma distributions as the Kolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson Darling test and the Watson test. For each test a parametric bootstrap procedure is implemented, as considered in Henze, Meintanis & Ebner (2012) <doi:10.1080/03610926.2010.542851>. The recent procedures presented in Henze, Meintanis & Ebner (2012) <doi:10.1080/03610926.2010.542851> and Betsch & Ebner (2019) <doi:10.1007/s00184-019-00708-7> are implemented. Estimation of parameters of the gamma law are implemented using the method of Bhattacharya (2001) <doi:10.1080/00949650108812100>.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.