Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a DBI interface to MySQL / MariaDB. The RMySQL package contains an old implementation based on legacy code from S-PLUS which is being phased out. A modern MySQL client based on Rcpp is available from the RMariaDB package.
This package provides tests and assertions to perform frequent argument checks. A substantial part of the package was written in C to minimize any worries about execution time overhead.
This package provides simple mechanisms for defining and interpreting package options. It provides helpers for interpreting environment variables, global options, defining default values and more.
Tools for integrating spatially-misaligned GIS datasets. Part of the Sub-National Geospatial Data Archive System.
This package provides tools for performing the leaf reordering for the dendrogram that preserves the hierarchical clustering result and at the same time tries to group instances from the same class together.
This package provides fast algorithms for the Theil-Sen estimator, Siegel's repeated median slope estimator, and Passing-Bablok regression. The implementation is based on algorithms by Dillencourt et al. (1992) <doi:10.1142/S0218195992000020> and Matousek et al. (1998) <doi:10.1007/PL00009190>. The implementations are detailed in Raymaekers (2023) <doi:10.32614/RJ-2023-012> and Raymaekers J., Dufey F. (2022) <arXiv:2202.08060>. All algorithms run in quasilinear time.
This package provides data sets and scripts to accompany Time Series Analysis and Its Applications: With R Examples (4th ed), by R.H. Shumway and D.S. Stoffer. Springer Texts in Statistics, 2017, https://doi.org/10.1007/978-3-319-52452-8, and Time Series: A Data Analysis Approach Using R. Chapman-Hall, 2019, https://doi.org/10.1201/9780429273285.
This package can be used to conduct post hoc analyses of resampling results generated by models. For example, if two models are evaluated with the root mean squared error (RMSE) using 10-fold cross-validation, there are 10 paired statistics. These can be used to make comparisons between models without involving a test set.
This package provides an R interface to Google's BigQuery database.
This package provides functions for Constraint Based Simulation using Flux Balance Analysis and informative analysis of the data generated during simulation.
This tool generates high number of both single- and multi-objective test functions. These functions are frequently used for the benchmarking of (numerical) optimization algorithms. Moreover, it offers a set of convenient functions to generate, plot and work with objective functions.
This package provides functions for plotting graphical shapes such as ellipses, circles, cylinders, arrows, ...
This package provides a collection of tests, data sets, and examples for diagnostic checking in linear regression models. Furthermore, some generic tools for inference in parametric models are provided.
This package implements Barzilai-Borwein spectral methods for solving nonlinear system of equations, and for optimizing nonlinear objective functions subject to simple constraints.
This package provides suite of functions to work with regression model broom::tidy() tibbles. The suite includes functions to group regression model terms by variable, insert reference and header rows for categorical variables, add variable labels, and more.
This package provides software and data for the book "An Introduction to the Bootstrap" by B. Efron and R. Tibshirani, 1993, Chapman and Hall. This package is primarily provided for projects already based on it, and for support of the book. New projects should preferentially use the recommended package "boot".
This package is a collection of several algorithms to obtain archetypoids with small and large databases and with both classical multivariate data and functional data (univariate and multivariate). Some of these algorithms also detect anomalies (outliers).
This package provides a set of Shiny apps for effective communication and understanding in statistics. The current version includes properties of normal distribution, properties of sampling distribution, one-sample z and t tests, two samples independent (unpaired) t test and analysis of variance.
This package provides a set of tools to help explain which variables are most important in a random forests. Various variable importance measures are calculated and visualized in different settings in order to get an idea on how their importance changes depending on our criteria (Hemant Ishwaran and Udaya B. Kogalur and Eiran Z. Gorodeski and Andy J. Minn and Michael S. Lauer (2010) <doi:10.1198/jasa.2009.tm08622>, Leo Breiman (2001) <doi:10.1023/A:1010933404324>).
This package provides an interface from R to Python modules, classes, and functions. When calling into Python, R data types are automatically converted to their equivalent Python types. When values are returned from Python to R they are converted back to R types.
The pls package implements multivariate regression methods: Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), and Canonical Powered Partial Least Squares (CPPLS). It supports:
several algorithms: the traditional orthogonal scores (NIPALS) PLS algorithm, kernel PLS, wide kernel PLS, Simpls, and PCR through
svdmulti-response models (or PLS2)
flexible cross-validation
Jackknife variance estimates of regression coefficients
extensive and flexible plots: scores, loadings, predictions, coefficients, (R)MSEP, R², and correlation loadings
formula interface, modelled after
lm(), with methods for predict, print, summary, plot, update, etc.extraction functions for coefficients, scores, and loadings
MSEP, RMSEP, and R² estimates
multiplicative scatter correction (MSC)
This package provides an R interface to the Lawson-Hanson implementation of an algorithm for non-negative least squares (NNLS). It also allows the combination of non-negative and non-positive constraints.
This package converts between R and Simple Feature sf objects, without depending on the Simple Feature library. Conversion functions are available at both the R level, and through Rcpp.
This package provides a collection of miscellaneous statistical functions for:
probability distributions,
probability density estimation,
most frequent value estimation,
other statistical measures of location,
construction of histograms,
calculation of the Hellinger distance,
use of classical kernels, and
univariate piecewise-constant regression.