Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform Canonical correlation between two forms of high demensional genetic data, and associate the first compoent of each form of data with a specific biologically interesting pattern of associations with multiple endpoints. A probe level analysis is also implemented.
This package provides means to interactively visualize guide RNAs (gRNAs) in GuideSet objects via Shiny application. This GUI can be self-contained or as a module within a larger Shiny app. The content of the app reflects the annotations present in the passed GuideSet object, and includes intuitive tools to examine, filter, and export gRNAs, thereby making gRNA design more user-friendly.
Store University of Washington CADD v1.6 hg38 pathogenicity scores AnnotationHub Resource Metadata. Provide provenance and citation information for University of Washington CADD v1.6 hg38 pathogenicity score AnnotationHub resources. Illustrate in a vignette how to access those resources.
The Chromatograms packages defines an efficient infrastructure for storing and handling of chromatographic mass spectrometry data. It provides different implementations of *backends* to store and represent the data. Such backends can be optimized for small memory footprint or fast data access/processing. A lazy evaluation queue and chunk-wise processing capabilities ensure efficient analysis of also very large data sets.
Spatial homogeneous regions (SHRs) in tissues are domains that are homogenous with respect to cell type composition. We present a method for identifying SHRs using spatial transcriptomics data, and demonstrate that it is efficient and effective at finding SHRs for a wide variety of tissue types. concordex relies on analysis of k-nearest-neighbor (kNN) graphs. The tool is also useful for analysis of non-spatial transcriptomics data, and can elucidate the extent of concordance between partitions of cells derived from clustering algorithms, and transcriptomic similarity as represented in kNN graphs.
The package is user friendly interface based on the cgdsr and other modeling packages to explore, compare, and analyse all available Cancer Data (Clinical data, Gene Mutation, Gene Methylation, Gene Expression, Protein Phosphorylation, Copy Number Alteration) hosted by the Computational Biology Center at Memorial-Sloan-Kettering Cancer Center (MSKCC).
colorectal cancer mRNA and miRNA on 18 cell lines.
This package contains microarray gene expression data generated from the Connectivity Map build 02 and LINCS l1000. The data are used by the ccmap package to find drugs and drug combinations to mimic or reverse a gene expression signature.
This package implements four major subtype classifiers for high-grade serous (HGS) ovarian cancer as described by Helland et al. (PLoS One, 2011), Bentink et al. (PLoS One, 2012), Verhaak et al. (J Clin Invest, 2013), and Konecny et al. (J Natl Cancer Inst, 2014). In addition, the package implements a consensus classifier, which consolidates and improves on the robustness of the proposed subtype classifiers, thereby providing reliable stratification of patients with HGS ovarian tumors of clearly defined subtype.
ChromSCape - Chromatin landscape profiling for Single Cells - is a ready-to-launch user-friendly Shiny Application for the analysis of single-cell epigenomics datasets (scChIP-seq, scATAC-seq, scCUT&Tag, ...) from aligned data to differential analysis & gene set enrichment analysis. It is highly interactive, enables users to save their analysis and covers a wide range of analytical steps: QC, preprocessing, filtering, batch correction, dimensionality reduction, vizualisation, clustering, differential analysis and gene set analysis.
The package provides functions for calculation of linear-quadratic cell survival curves and for ANOVA of experimental 2-way designs along with the colony formation assay.
This R package provides an R Shiny application that enables the user to generate, manage, and edit data and metadata files suitable for the import in cBioPortal for Cancer Genomics. Create cancer studies and edit its metadata. Upload mutation data of a patient that will be concatenated to the data_mutation_extended.txt file of the study. Create and edit clinical patient data, sample data, and timeline data. Create custom timeline tracks for patients.
This package provides tools for managing SingleCellExperiment objects as projects. Includes functions for analysis and visualization of single-cell data. Also included is a shiny app for visualization of pre-processed scRNA data. Supported by NIH grants R01CA137124 and R01EY026661 to David Cobrinik.
This package can be used to estimate the number of clusters in a set of microarray data, as well as test the stability of these clusters.
Package that implements the COSNet classification algorithm. The algorithm predicts node labels in partially labeled graphs where few positives are available for the class being predicted.
This package provides the analysis methods fourthcorner and RLQ analysis for large-scale transcriptomic data.
This package provides a package containing an environment representing the Cotton.cdf file.
COPA is a method to find genes that undergo recurrent fusion in a given cancer type by finding pairs of genes that have mutually exclusive outlier profiles.
CiteFuse pacakage implements a suite of methods and tools for CITE-seq data from pre-processing to integrative analytics, including doublet detection, network-based modality integration, cell type clustering, differential RNA and protein expression analysis, ADT evaluation, ligand-receptor interaction analysis, and interactive web-based visualisation of the analyses.
Package for assessing the statistical significance of periodic expression based on Fourier analysis and comparison with data generated by different background models.
Datasets to support COPDSexaulDimorphism Package.
Experiment data package. Contains microarray data from several large expression compendia that have been pre-processed for use with the CellMapper package. This pre-processed data is recommended for routine searches using the CellMapper package.
The CNVRanger package implements a comprehensive tool suite for CNV analysis. This includes functionality for summarizing individual CNV calls across a population, assessing overlap with functional genomic regions, and association analysis with gene expression and quantitative phenotypes.
Logic based ordinary differential equation (ODE) add-on to CellNOptR.