Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uncertainty quantification and inverse estimation by probabilistic generative models from the beginning of the data analysis. An example is a Fourier basis method for inverse estimation in scattering analysis of microscopy videos. It does not require specifying a certain range of Fourier bases and it substantially reduces computational cost via the generalized Schur algorithm. See the reference: Mengyang Gu, Yue He, Xubo Liu and Yimin Luo (2023), <doi:10.48550/arXiv.2309.02468>.
This package provides a wrapper for the Microsoft Azure Maps REST APIs <https://learn.microsoft.com/en-us/rest/api/maps/route?view=rest-maps-2025-01-01>, enabling users to access mapping and geospatial services directly from R. This package simplifies authenticating, building, and sending requests for services like route directions. It handles conversions between R objects (such as sf objects) and the GeoJSON+JSON format required by the API, making it easier to integrate Azure Maps into R-based data analysis workflows.
We extend existing gene enrichment tests to perform adverse event enrichment analysis. Unlike the continuous gene expression data, adverse event data are counts. Therefore, adverse event data has many zeros and ties. We propose two enrichment tests. One is a modified Fisher's exact test based on pre-selected significant adverse events, while the other is based on a modified Kolmogorov-Smirnov statistic. We add Covariate adjustment to improve the analysis."Adverse event enrichment tests using VAERS" Shuoran Li, Lili Zhao (2020) <arXiv:2007.02266>.
This package provides a powerful tool for automating the early detection of disease outbreaks in time series data. aeddo employs advanced statistical methods, including hierarchical models, in an innovative manner to effectively characterize outbreak signals. It is particularly useful for epidemiologists, public health professionals, and researchers seeking to identify and respond to disease outbreaks in a timely fashion. For a detailed reference on hierarchical models, consult Henrik Madsen and Poul Thyregod's book (2011), ISBN: 9781420091557.
For emulating multifidelity computer models. The major methods include univariate autoregressive cokriging and multivariate autoregressive cokriging. The autoregressive cokriging methods are implemented for both hierarchically nested design and non-nested design. For hierarchically nested design, the model parameters are estimated via standard optimization algorithms; For non-nested design, the model parameters are estimated via Monte Carlo expectation-maximization (MCEM) algorithms. In both cases, the priors are chosen such that the posterior distributions are proper. Notice that the uniform priors on range parameters in the correlation function lead to improper posteriors. This should be avoided when Bayesian analysis is adopted. The development of objective priors for autoregressive cokriging models can be found in Pulong Ma (2020) <DOI:10.1137/19M1289893>. The development of the multivariate autoregressive cokriging models with possibly non-nested design can be found in Pulong Ma, Georgios Karagiannis, Bledar A Konomi, Taylor G Asher, Gabriel R Toro, and Andrew T Cox (2019) <arXiv:1909.01836>.
This package provides methods for processing corporate balance sheets with a focus on the Brazilian reporting format. Includes data standardization, classification by accounting categories, and aggregation of values. Supports accounting and financial analyses of companies, improving efficiency and ensuring reproducibility of empirical studies.
This package implements several new association indices that can control for various types of errors. Also includes existing association indices and functions for simulating the effects of different rates of error on estimates of association strength between individuals using each method.
An efficient Rcpp implementation of the Adaptive Rejection Metropolis Sampling (ARMS) algorithm proposed by Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995) <doi:10.2307/2986138>. This allows for sampling from a univariate target probability distribution specified by its (potentially unnormalised) log density.
This package provides a number of functions to create and analyze factorial plans according to the Design of Experiments (DoE) approach, with the addition of some utility function to perform some statistical analyses. DoE approach follows the approach in "Design and Analysis of Experiments" by Douglas C. Montgomery (2019, ISBN:978-1-119-49244-3). The package also provides utilities used in the course "Analysis of Data and Statistics" at the University of Trento, Italy.
Manage dependencies during package development. This can retrieve all dependencies that are used in ".R" files in the "R/" directory, in ".Rmd" files in "vignettes/" directory and in roxygen2 documentation of functions. There is a function to update the "DESCRIPTION" file of your package with CRAN packages or any other remote package. All functions to retrieve dependencies of ".R" scripts and ".Rmd" or ".qmd" files can be used independently of a package development.
This package provides non-invasive annotation of package load calls such as \codelibrary(), \codep_load(), and \coderequire() so that we can have an idea of what the packages we are loading are meant for.
Fits tractable fully parametric odds-based regression models for survival data, including proportional odds (PO), accelerated failure time (AFT), accelerated odds (AO), and General Odds (GO) models in overall survival frameworks. Given at least an R function specifying the survivor, hazard rate and cumulative distribution functions, any user-defined parametric distribution can be fitted. We applied and evaluated a minimum of seventeen (17) various baseline distributions that can handle different failure rate shapes for each of the four different proposed odds-based regression models. For more information see Bennet et al., (1983) <doi:10.1002/sim.4780020223>, and Muse et al., (2022) <doi:10.1016/j.aej.2022.01.033>.
All animal behaviour occurs sequentially. The package has a number of functions to format sequence data from different sources, to analyse sequential behaviour and communication in animals. It also has functions to plot the data and to calculate the entropy of sequences.
Coerce R object to asciidoc', txt2tags', restructuredText', org', textile or pandoc syntax. Package comes with a set of drivers for Sweave'.
The centralized empirical cumulative average deviation function is utilized to develop both Ada-plot and Uda-plot as alternatives to Ad-plot and Ud-plot introduced by the author. Analogous to Ad-plot, Ada-plot can identify symmetry, skewness, and outliers of the data distribution. The Uda-plot is as exceptional as Ud-plot in assessing normality. The d-value that quantifies the degree of proximity between the Uda-plot and the graph of the estimated normal density function helps guide to make decisions on confirmation of normality. Extreme values in the data can be eliminated using the 1.5IQR rule to create its robust version if user demands. Full description of the methodology can be found in the article by Wijesuriya (2025a) <doi:10.1080/03610926.2025.2558108>. Further, the development of Ad-plot and Ud-plot is contained in both article and the adplots R package by Wijesuriya (2025b & 2025c) <doi:10.1080/03610926.2024.2440583> and <doi:10.32614/CRAN.package.adplots>.
This package provides a collection of tools for the estimation of animals home range.
This package provides a collection of methods for both the rank-based estimates and least-square estimates to the Accelerated Failure Time (AFT) model. For rank-based estimation, it provides approaches that include the computationally efficient Gehan's weight and the general's weight such as the logrank weight. Details of the rank-based estimation can be found in Chiou et al. (2014) <doi:10.1007/s11222-013-9388-2> and Chiou et al. (2015) <doi:10.1002/sim.6415>. For the least-square estimation, the estimating equation is solved with generalized estimating equations (GEE). Moreover, in multivariate cases, the dependence working correlation structure can be specified in GEE's setting. Details on the least-squares estimation can be found in Chiou et al. (2014) <doi:10.1007/s10985-014-9292-x>.
Parentage assignment package. Parentage assignment is performed based on observed average Mendelian transmission probability distributions or Exclusion. The main functions of this package are the function APIS_2n(), APIS_3n() and launch_APIShiny(), which perform parentage assignment.
Automated Characterization of Health Information at Large-Scale Longitudinal Evidence Systems. Creates a descriptive statistics summary for an Observational Medical Outcomes Partnership Common Data Model standardized data source. This package includes functions for executing summary queries on the specified data source and exporting reporting content for use across a variety of Observational Health Data Sciences and Informatics community applications.
Semi-distributed Precipitation-Runoff Modeling based on airGR package models integrating human infrastructures and their managements.
This package provides a toolbox to read all R files inside a package and automatically generate @importFrom roxygen2 tags in the right place. Includes a shiny application to review the changes before applying them.
Statistical analysis of archaeological dates and groups of dates. This package allows to post-process Markov Chain Monte Carlo (MCMC) simulations from ChronoModel <https://chronomodel.com/>, Oxcal <https://c14.arch.ox.ac.uk/oxcal.html> or BCal <https://bcal.shef.ac.uk/>. It provides functions for the study of rhythms of the long term from the posterior distribution of a series of dates (tempo and activity plot). It also allows the estimation and visualization of time ranges from the posterior distribution of groups of dates (e.g. duration, transition and hiatus between successive phases) as described in Philippe and Vibet (2020) <doi:10.18637/jss.v093.c01>.
This package provides a testing framework for testing the multivariate point null hypothesis. A testing framework described in Elder et al. (2022) <arXiv:2203.01897> to test the multivariate point null hypothesis. After the user selects a parameter of interest and defines the assumed data generating mechanism, this information should be encoded in functions for the parameter estimator and its corresponding influence curve. Some parameter and data generating mechanism combinations have codings in this package, and are explained in detail in the article.
This package contains a shiny application called AdEPro (Animation of Adverse Event Profiles) which (audio-)visualizes adverse events occurring in clinical trials. As this data is usually considered sensitive, this tool is provided as a stand-alone application that can be launched from any local machine on which the data is stored.