Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available (Noma et al. (2021) <doi:10.1080/23737484.2021.1894408>).
This package provides a series of functions which aid in both simulating and determining the properties of finite, discrete-time, discrete state markov chains. Two functions (DTMC, MultDTMC) produce n iterations of a Markov Chain(s) based on transition probabilities and an initial distribution. The function FPTime determines the first passage time into each state. The function statdistr determines the stationary distribution of a Markov Chain.
Generate descriptive statistics such as measures of location, dispersion, frequency tables, cross tables, group summaries and multiple one/two way tables.
This package provides methods to estimate dynamic treatment regimes using Interactive Q-Learning, Q-Learning, weighted learning, and value-search methods based on Augmented Inverse Probability Weighted Estimators and Inverse Probability Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
This package performs sensitivity analysis for the sharp null, attributable effects, and weak nulls in matched studies with continuous exposures and binary or continuous outcomes as described in Zhang, Small, Heng (2024) <doi:10.48550/arXiv.2401.06909> and Zhang, Heng (2024) <doi:10.48550/arXiv.2409.12848>. Two of the functions require installation of the Gurobi optimizer. Please see <https://docs.gurobi.com/current/#refman/ins_the_r_package.html> for guidance.
This package provides data transformations, estimation utilities, predictive evaluation measures and simulation functions for discrete time survival analysis.
Function to test spatial segregation and association based in contingency table analysis of nearest neighbour counts following Dixon (2002) <doi:10.1080/11956860.2002.11682700>. Some Fortran code has been included to the original dixon2002() function of the ecespa package to improve speed.
The FBED and mmpc variable selection algorithms have been implemented using the distance correlation. The references include: Tsamardinos I., Aliferis C. F. and Statnikov A. (2003). "Time and sample efficient discovery of Markovblankets and direct causal relations". In Proceedings of the ninth ACM SIGKDD international Conference. <doi:10.1145/956750.956838>. Borboudakis G. and Tsamardinos I. (2019). "Forward-backward selection with early dropping". Journal of Machine Learning Research, 20(8): 1--39. <doi:10.48550/arXiv.1705.10770>. Huo X. and Szekely G.J. (2016). "Fast computing for distance covariance". Technometrics, 58(4): 435--447. <doi:10.1080/00401706.2015.1054435>.
This package provides tools for constructing, manipulating and using distance metrics.
Output graphics to EMF+/EMF.
Feed longitudinal data into a Bayesian Latent Factor Model to obtain a low-rank representation. Parameters are estimated using a Hamiltonian Monte Carlo algorithm with STAN. See G. Weinrott, B. Fontez, N. Hilgert and S. Holmes, "Bayesian Latent Factor Model for Functional Data Analysis", Actes des JdS 2016.
Data cleaning scripts typically contain a lot of if this change that type of statements. Such statements are typically condensed expert knowledge. With this package, such data modifying rules are taken out of the code and become in stead parameters to the work flow. This allows one to maintain, document, and reason about data modification rules as separate entities.
This package provides an easy to use implementation of life expectancy decomposition formulas for age bands, derived from Ponnapalli, K. (2005). A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth. Demographic Research, 12, pp.141â 172. <doi:10.4054/demres.2005.12.7> In addition, there is a decomposition function for disease cause breakdown and a couple helpful plot functions.
Estimation of heterogeneity-robust difference-in-differences estimators, with a binary, discrete, or continuous treatment, in designs where past treatments may affect the current outcome.
This package implements various decision support tools related to the Econometrics & Technometrics. Subroutines include correlation reliability test, Mahalanobis distance measure for outlier detection, combinatorial search (all possible subset regression), non-parametric efficiency analysis measures: DDF (directional distance function), DEA (data envelopment analysis), HDF (hyperbolic distance function), SBM (slack-based measure), and SF (shortage function), benchmarking, Malmquist productivity analysis, risk analysis, technology adoption model, new product target setting, network DEA, dynamic DEA, intertemporal budgeting, etc.
Summarizes data frames by calculating various statistics including central tendency, dispersion, shape, and normality diagnostics. Handles numeric, character, and factor columns with NA-aware computations.
This linear model solution is useful when both predictor and response have associated uncertainty. The doubly weights linear model solution is invariant on which quantity is used as predictor or response. Based on the results by Reed(1989) <doi:10.1119/1.15963> and Ripley & Thompson(1987) <doi:10.1039/AN9871200377>.
The goal of dataspice is to make it easier for researchers to create basic, lightweight, and concise metadata files for their datasets. These basic files can then be used to make useful information available during analysis, create a helpful dataset "README" webpage, and produce more complex metadata formats to aid dataset discovery. Metadata fields are based on the Schema.org and Ecological Metadata Language standards.
Inference functionalities for distributed-lag linear structural equation models (DLSEMs). DLSEMs are Markovian structural causal models where each factor of the joint probability distribution is a distributed-lag linear regression with constrained lag shapes (Magrini, 2018 <doi:10.2478/bile-2018-0012>; Magrini et al., 2019 <doi:10.1007/s11135-019-00855-z>). DLSEMs account for temporal delays in the dependence relationships among the variables through a single parameter per covariate, thus allowing to perform dynamic causal inference in a feasible fashion. Endpoint-constrained quadratic, quadratic decreasing, linearly decreasing and gamma lag shapes are available.
Containing the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA), log amplitude Detrended Fluctuation Analysis (DeltalogDFA), and the Activity Balance Index, it also includes two DFA automatic methods for identifying crossover points and a Deltalog automatic method for identifying reference channels.
This package performs analysis of popular experimental designs used in the field of biological research. The designs covered are completely randomized design, randomized complete block design, factorial completely randomized design, factorial randomized complete block design, split plot design, strip plot design and latin square design. The analysis include analysis of variance, coefficient of determination, normality test of residuals, standard error of mean, standard error of difference and multiple comparison test of means. The package has functions for transformation of data and yield data conversion. Some datasets are also added in order to facilitate examples.
Implementation of selected Tidyverse functions within DataSHIELD', an open-source federated analysis solution in R. Currently, DataSHIELD contains very limited tools for data manipulation, so the aim of this package is to improve the researcher experience by implementing essential functions for data manipulation, including subsetting, filtering, grouping, and renaming variables. This is the serverside package which should be installed on the server holding the data, and is used in conjuncture with the clientside package dsTidyverseClient which is installed in the local R environment of the analyst. For more information, see <https://tidyverse.org/> and <https://datashield.org/>.
Differential geometric least angle regression method for fitting sparse generalized linear models. In this version of the package, the user can fit models specifying Gaussian, Poisson, Binomial, Gamma and Inverse Gaussian family. Furthermore, several link functions can be used to model the relationship between the conditional expected value of the response variable and the linear predictor. The solution curve can be computed using an efficient predictor-corrector or a cyclic coordinate descent algorithm, as described in the paper linked to via the URL below.
Abstract of Manuscript. Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the userâ s gene lists, aiding in hypothesis generation and data-driven literature review. Sokolowski, Dustin J., et al. "Differential Expression Enrichment Tool (DEET): an interactive atlas of human differential gene expression." Nucleic Acids Research Genomics and Bioinformatics (2023).