Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Robust multivariate methods for high dimensional data including outlier detection (Filzmoser and Todorov (2013) <doi:10.1016/j.ins.2012.10.017>), robust sparse PCA (Croux et al. (2013) <doi:10.1080/00401706.2012.727746>, Todorov and Filzmoser (2013) <doi:10.1007/978-3-642-33042-1_31>), robust PLS (Todorov and Filzmoser (2014) <doi:10.17713/ajs.v43i4.44>), and robust sparse classification (Ortner et al. (2020) <doi:10.1007/s10618-019-00666-8>).
R interface to the CSDP semidefinite programming library. Installs version 6.1.1 of CSDP from the COIN-OR website if required. An existing installation of CSDP may be used by passing the proper configure arguments to the installation command. See the INSTALL file for further details.
Estimates robust rank-based fixed effects and predicts robust random effects in two- and three- level random effects nested models. The methodology is described in Bilgic & Susmann (2013) <https://journal.r-project.org/archive/2013/RJ-2013-027/>.
Enhances the R Optimization Infrastructure ('ROI') package by registering the quadprog solver. It allows for solving quadratic programming (QP) problems.
Testing and inference for regression models using residual randomization methods. The basis of inference is an invariance assumption on the regression errors, e.g., clustered errors, or doubly-clustered errors.
Eprime is a set of programs for administering psychological experiments by computer. This package provides functions for loading, parsing, filtering and exporting data in the text files produced by Eprime experiments.
This package provides functions and examples for testing hypothesis about the population mean and variance on samples drawn by r-size biased sampling schemes.
This package provides a compact R interface for performing tensor calculations. This is achieved by allowing (upper and lower) index labeling of arrays and making use of Ricci calculus conventions to implicitly trigger contractions and diagonal subsetting. Explicit tensor operations, such as addition, subtraction and multiplication of tensors via the standard operators, raising and lowering indices, taking symmetric or antisymmetric tensor parts, as well as the Kronecker product are available. Common tensors like the Kronecker delta, Levi Civita epsilon, certain metric tensors, the Christoffel symbols, the Riemann as well as Ricci tensors are provided. The covariant derivative of tensor fields with respect to any metric tensor can be evaluated. An effort was made to provide the user with useful error messages.
Color palettes from famous artists and paintings.
Defines storage standard for Read, process, and analyze intracranial electroencephalography and deep-brain stimulation in RAVE', a reproducible framework for analysis and visualization of iEEG by Magnotti, Wang, and Beauchamp, (2020, <doi:10.1016/j.neuroimage.2020.117341>). Supports brain imaging data structure (BIDS) <https://bids.neuroimaging.io> and native file structure to ingest signals from Matlab data files, hierarchical data format 5 (HDF5), European data format (EDF), BrainVision core data format (BVCDF), or BlackRock Microsystem (NEV/NSx); process images in Neuroimaging informatics technology initiative (NIfTI) and FreeSurfer formats, providing brain imaging normalization to template brain, facilitating threeBrain package for comprehensive electrode localization via YAEL (your advanced electrode localizer) by Wang, Magnotti, Zhang, and Beauchamp (2023, <doi:10.1523/ENEURO.0328-23.2023>).
Allows easy access to the LEMON Graph Library set of algorithms, written in C++. See the LEMON project page at <https://lemon.cs.elte.hu/trac/lemon>. Current LEMON version is 1.3.1.
Constrained clustering, transfer functions, and other methods for analysing Quaternary science data.
Modularizes source code. Keeps the global environment clean, explicifies interdependencies. Inspired by RequireJS'<http://requirejs.org/>.
An implementation of easy tools for outlier robust inference in two-stage least squares (2SLS) models. The user specifies a reference distribution against which observations are classified as outliers or not. After removing the outliers, adjusted standard errors are automatically provided. Furthermore, several statistical tests for the false outlier detection rate can be calculated. The outlier removing algorithm can be iterated a fixed number of times or until the procedure converges. The algorithms and robust inference are described in more detail in Jiao (2019) <https://drive.google.com/file/d/1qPxDJnLlzLqdk94X9wwVASptf1MPpI2w/view>.
Generates a project and repo for easy initialization of a GitHub repo for R workshops. The repo includes a README with instructions to ensure that all users have the needed packages, an RStudio project with the right directories and the proper data. The repo can then be used for hosting code taught during the workshop.
This package provides functions for semi-automated quality control of bulk RNA-seq data.
Computes 26 financial risk measures for any continuous distribution. The 26 financial risk measures include value at risk, expected shortfall due to Artzner et al. (1999) <DOI:10.1007/s10957-011-9968-2>, tail conditional median due to Kou et al. (2013) <DOI:10.1287/moor.1120.0577>, expectiles due to Newey and Powell (1987) <DOI:10.2307/1911031>, beyond value at risk due to Longin (2001) <DOI:10.3905/jod.2001.319161>, expected proportional shortfall due to Belzunce et al. (2012) <DOI:10.1016/j.insmatheco.2012.05.003>, elementary risk measure due to Ahmadi-Javid (2012) <DOI:10.1007/s10957-011-9968-2>, omega due to Shadwick and Keating (2002), sortino ratio due to Rollinger and Hoffman (2013), kappa due to Kaplan and Knowles (2004), Wang (1998)'s <DOI:10.1080/10920277.1998.10595708> risk measures, Stone (1973)'s <DOI:10.2307/2978638> risk measures, Luce (1980)'s <DOI:10.1007/BF00135033> risk measures, Sarin (1987)'s <DOI:10.1007/BF00126387> risk measures, Bronshtein and Kurelenkova (2009)'s risk measures.
This package provides a tool to calculate Cardiovascular Risk Scores in large data frames as published in Perez-Vicencio, et al (2024) <doi:10.1136/openhrt-2024-002755>. Cardiovascular risk scores are statistical tools used to assess an individual's likelihood of developing a cardiovascular disease based on various risk factors, such as age, gender, blood pressure, cholesterol levels, and smoking. Here we bring together the six most commonly used in the emergency department. Using RiskScorescvd', you can calculate all the risk scores in an extended dataset in seconds. PCE (ASCVD) described in Goff, et al (2013) <doi:10.1161/01.cir.0000437741.48606.98>. EDACS described in Mark DG, et al (2016) <doi:10.1016/j.jacc.2017.11.064>. GRACE described in Fox KA, et al (2006) <doi:10.1136/bmj.38985.646481.55>. HEART is described in Mahler SA, et al (2017) <doi:10.1016/j.clinbiochem.2017.01.003>. SCORE2/OP described in SCORE2 working group and ESC Cardiovascular risk collaboration (2021) <doi:10.1093/eurheartj/ehab309>. TIMI described in Antman EM, et al (2000) <doi:10.1001/jama.284.7.835>. SCORE2-Diabetes described in SCORE2-Diabetes working group and ESC Cardiovascular risk collaboration (2023) <doi:10.1093/eurheartj/ehab260>. SCORE2/OP with CKD add-on described in Kunihiro M et al (2022) <doi:10.1093/eurjpc/zwac176>.
An integrated solution to perform a series of text mining tasks such as importing and cleaning a corpus, and analyses like terms and documents counts, lexical summary, terms co-occurrences and documents similarity measures, graphs of terms, correspondence analysis and hierarchical clustering. Corpora can be imported from spreadsheet-like files, directories of raw text files, as well as from Dow Jones Factiva', LexisNexis', Europresse and Alceste files.
Converts LESS to CSS. It uses V8 engine, where LESS parser is run. Functions for LESS text, file or folder conversion are provided. This work was supported by a junior grant research project by Czech Science Foundation GACR no. GJ18-04150Y'.
Implementations for several robust procedures that allow for (online) extraction of the signal of univariate or multivariate time series by applying robust regression techniques to a moving time window are provided. Included are univariate filtering procedures based on repeated-median regression as well as hybrid and trimmed filters derived from it; see Schettlinger et al. (2006) <doi:10.1515/BMT.2006.010>. The adaptive online repeated median by Schettlinger et al. (2010) <doi:10.1002/acs.1105> and the slope comparing adaptive repeated median by Borowski and Fried (2013) <doi:10.1007/s11222-013-9391-7> choose the width of the moving time window adaptively. Multivariate versions are also provided; see Borowski et al. (2009) <doi:10.1080/03610910802514972> for a multivariate online adaptive repeated median and Borowski (2012) <doi:10.17877/DE290R-14393> for a multivariate slope comparing adaptive repeated median. Furthermore, a repeated-median based filter with automatic outlier replacement and shift detection is provided; see Fried (2004) <doi:10.1080/10485250410001656444>.
This package provides a comprehensive set of tools designed for optimizing likelihood within a tie-oriented (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>) or an actor-oriented modelling framework (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>) in relational event networks. The package accommodates both frequentist and Bayesian approaches. The frequentist approaches that the package incorporates are the Maximum Likelihood Optimization (MLE) and the Gradient-based Optimization (GDADAMAX). The Bayesian methodologies included in the package are the Bayesian Sampling Importance Resampling (BSIR) and the Hamiltonian Monte Carlo (HMC). The flexibility of choosing between frequentist and Bayesian optimization approaches allows researchers to select the estimation approach which aligns the most with their analytical preferences.
An R Interface to Bloomberg is provided via the Blp API'.
This package provides formatting linting to roxygen2 tags. Linters report roxygen2 tags that do not conform to a standard style. These linters can be a helpful check for building more consistent documentation and to provide reminders about best practices or checks for typos. Default linting suites are provided for common style guides such as the one followed by the tidyverse', though custom linters can be registered by other packages or be custom-tailored to a specific package.