Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality to process text files created by Emacs Org mode, and decompose the content to the smallest components (headlines, body, tag, clock entries etc). Emacs is an extensible, customizable text editor and Org mode is for keeping notes, maintaining TODO lists, planning projects. Allows users to analyze org files as data frames in R, e.g., to convieniently group tasks by tag into project and calculate total working hours. Also provides some help functions like search.parent, gg.pie (visualise working hours in ggplot2) and tree.headlines (visualise headline stricture in tree format) to help user managing their complex org files.
The comprehensive knowledge of epigenetic modifications in plants, encompassing histone modifications in regulating gene expression, is not completely ingrained. It is noteworthy that histone deacetylation and histone H3 lysine 27 trimethylation (H3K27me3) play a role in repressing transcription in eukaryotes. In contrast, histone acetylation (H3K9ac) and H3K4me3 have been inevitably linked to the stimulation of gene expression, which significantly influences plant development and plays a role in plant responses to biotic and abiotic stresses. To our knowledge this the first multiclass classifier for predicting histone modification in plants. <doi:10.1186/s12864-019-5489-4>.
Generates n hierarchical clustering hypotheses on subsets of classifiers (usually species in community ecology studies). The n clustering hypotheses are combined to generate a generalized cluster, and computes three metrics of support. 1) The average proportion of elements conforming the group in each of the n clusters (integrity). And 2) the contamination, i.e., the average proportion of elements from other groups that enter a focal group. 3) The probability of existence of the group gives the integrity and contamination in a Bayesian approach.
Simultaneously evaluate multiple ordinal outcome measures. Applied data analysts in particular are faced with uncertainty in choosing appropriate statistical tests for ordinal data. The included shiny application allows users to simulate outcomes given different ordinal data distributions.
Utilize an orthogonality constrained optimization algorithm of Wen & Yin (2013) <DOI:10.1007/s10107-012-0584-1> to solve a variety of dimension reduction problems in the semiparametric framework, such as Ma & Zhu (2012) <DOI:10.1080/01621459.2011.646925>, Ma & Zhu (2013) <DOI:10.1214/12-AOS1072>, Sun, Zhu, Wang & Zeng (2019) <DOI:10.1093/biomet/asy064> and Zhou, Zhu & Zeng (2021) <DOI:10.1093/biomet/asaa087>. The package also implements some existing dimension reduction methods such as hMave by Xia, Zhang, & Xu (2010) <DOI:10.1198/jasa.2009.tm09372> and partial SAVE by Feng, Wen & Zhu (2013) <DOI:10.1080/01621459.2012.746065>. It also serves as a general purpose optimization solver for problems with orthogonality constraints, i.e., in Stiefel manifold. Parallel computing for approximating the gradient is enabled through OpenMP'.
This package provides details such as Morphine Equivalent Dose (MED), brand name and opioid content which are calculated of all oral opioids authorized for sale by Health Canada and the FDA based on their Drug Identification Number (DIN) or National Drug Code (NDC). MEDs are calculated based on recommendations by Canadian Institute for Health Information (CIHI) and Von Korff et al (2008) and information obtained from Health Canada's Drug Product Database's monthly data dump or FDA Daily database for Canadian and US databases respectively. Please note in no way should output from this package be a substitute for medical advise. All medications should only be consumed on prescription from a licensed healthcare provider.
This package provides functions to calculate the out-of-bag learning curve for random forests for any measure that is available in the mlr package. Supported random forest packages are randomForest and ranger and trained models of these packages with the train function of mlr'. The main function is OOBCurve() that calculates the out-of-bag curve depending on the number of trees. With the OOBCurvePars() function out-of-bag curves can also be calculated for mtry', sample.fraction and min.node.size for the ranger package.
Quantifies hypothesis to data fit for repeated measures and longitudinal data, as described by Thorngate (1987) <doi:10.1016/S0166-4115(08)60083-7> and Grice et al., (2015) <doi:10.1177/2158244015604192>. Hypothesis and data are encoded as pairwise relative orderings which are then compared to determine the percentage of orderings in the data that are matched by the hypothesis.
Provide functionality for cancer subtyping using nearest centroids or machine learning methods based on TCGA data.
Client for the Office of National Statistics ('ONS') API <https://api.beta.ons.gov.uk/v1>.
This package provides a framework for organizing R projects with a standardized structure. Most analyses consist of three main components: code, results, and data, each with different requirements such as version control, sharing, and encryption. This package provides tools to set up and manage project directories, handle file paths consistently across operating systems, organize results using date-based structures, source code from specified directories, create and manage Quarto documents, and perform file operations safely. It ensures consistency across projects while accommodating different requirements for various types of content.
This package provides a client that grants access to the power of the ohsome API from R. It lets you analyze the rich data source of the OpenStreetMap (OSM) history. You can retrieve the geometry of OSM data at specific points in time, and you can get aggregated statistics on the evolution of OSM elements and specify your own temporal, spatial and/or thematic filters.
Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) <doi:10.48550/arXiv.2001.00636>. Loosely based on the GritBot <https://www.rulequest.com/gritbot-info.html> software.
This package provides a collection of general-purpose helper functions that I (and maybe others) find useful when developing data science software. Includes tools for simulation, data transformation, input validation, and more.
This package provides a client for the open-source monitoring and alerting toolkit, Prometheus', that emits metrics in the OpenMetrics format. Allows users to automatically instrument Plumber and Shiny applications, collect standard process metrics, as well as define custom counter, gauge, and histogram metrics of their own.
Splits initial strata into refined strata that optimize covariate balance. For more information, please email the author for a copy of the accompanying manuscript. To solve the linear program, the Gurobi commercial optimization software is recommended, but not required. The gurobi R package can be installed following the instructions at <https://www.gurobi.com/documentation/9.1/refman/ins_the_r_package.html>.
Facilitates the creation of intuitive figures to describe metabolomics data by utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) hierarchy data, and gathers functional orthology and gene data from the KEGG-REST API.
This package provides a set of tools that enables using OxCal from within R. OxCal (<https://c14.arch.ox.ac.uk/oxcal.html>) is a standard archaeological tool intended to provide 14C calibration and analysis of archaeological and environmental chronological information. OxcAAR allows simple calibration with Oxcal and plotting of the results as well as the execution of sophisticated ('OxCal') code and the import of the results of bulk analysis and complex Bayesian sequential calibration.
The openFDA API facilitates access to Federal Drug Agency (FDA) data on drugs, devices, foodstuffs, tobacco, and more with httr2'. This package makes the API easily accessible, returning objects which the user can convert to JSON data and parse. Kass-Hout TA, Xu Z, Mohebbi M et al. (2016) <doi:10.1093/jamia/ocv153>.
Multiple tools are now available for inferring the personalised germ line set from an adaptive immune receptor repertoire. Output from these tools is converted to a single format and supplemented with rich data such as usage and characterisation of novel germ line alleles. This data can be particularly useful when considering the validity of novel inferences. Use of the analysis provided is described in <doi:10.3389/fimmu.2019.00435>.
Automatically adding pkg:: to a function, i.e. mutate() becomes dplyr::mutate(). It is up to the user to determine which packages should be used explicitly, whether to include base R packages or use the functionality on selected text, a file, or a complete directory. User friendly logging is provided in the RStudio Markers pane. Lives in the spirit of lintr and styler'. Can also be used for checking which packages are actually used in a project.
This package provides a solver for ompr based on the R Optimization Infrastructure ('ROI'). The package makes all solvers in ROI available to solve ompr models. Please see the ompr website <https://dirkschumacher.github.io/ompr/> and package docs for more information and examples on how to use it.
Fits community site occupancy models to environmental DNA metabarcoding data collected using spatially-replicated survey design. Model fitting results can be used to evaluate and compare the effectiveness of species detection to find an efficient survey design. Reference: Fukaya et al. (2022) <doi:10.1111/2041-210X.13732>, Fukaya and Hasebe (2025) <doi:10.1002/1438-390X.12219>.
This package provides a framework for the optimization of breeding programs via optimum contribution selection and mate allocation. An easy to use set of function for computation of optimum contributions of selection candidates, and of the population genetic parameters to be optimized. These parameters can be estimated using pedigree or genotype information, and include kinships, kinships at native haplotype segments, and breed composition of crossbred individuals. They are suitable for managing genetic diversity, removing introgressed genetic material, and accelerating genetic gain. Additionally, functions are provided for computing genetic contributions from ancestors, inbreeding coefficients, the native effective size, the native genome equivalent, pedigree completeness, and for preparing and plotting pedigrees. The methods are described in:\n Wellmann, R., and Pfeiffer, I. (2009) <doi:10.1017/S0016672309000202>.\n Wellmann, R., and Bennewitz, J. (2011) <doi:10.2527/jas.2010-3709>.\n Wellmann, R., Hartwig, S., Bennewitz, J. (2012) <doi:10.1186/1297-9686-44-34>.\n de Cara, M. A. R., Villanueva, B., Toro, M. A., Fernandez, J. (2013) <doi:10.1111/mec.12560>.\n Wellmann, R., Bennewitz, J., Meuwissen, T.H.E. (2014) <doi:10.1017/S0016672314000196>.\n Wellmann, R. (2019) <doi:10.1186/s12859-018-2450-5>.