Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of functions to create and interact with dynamic documents and vignettes.
This is a supportive data package for the software package gage. However, the data supplied here are also useful for gene set or pathway analysis or microarray data analysis in general. In this package, we provide two demo microarray dataset: GSE16873 (a breast cancer dataset from GEO) and BMP6 (originally published as an demo dataset for GAGE, also registered as GSE13604 in GEO). This package also includes commonly used gene set data based on KEGG pathways and GO terms for major research species, including human, mouse, rat and budding yeast. Mapping data between common gene IDs for budding yeast are also included.
This package provides utilities for Receiver Operating Characteristic (ROC) curves, with a focus on micro arrays.
This package contains the functions to find the gene expression modules that represent the drivers of Kauffman's attractor landscape. The modules are the core attractor pathways that discriminate between different cell types of groups of interest. Each pathway has a set of synexpression groups, which show transcriptionally-coordinated changes in gene expression.
This package contains data for mapping between NCBI taxonomy ID and species. It is used by functions in the GenomeInfoDb package.
This package defines an S4 class for storing data from spatial -omics experiments. The class extends SingleCellExperiment to support storage and retrieval of additional information from spot-based and molecule-based platforms, including spatial coordinates, images, and image metadata. A specialized constructor function is included for data from the 10x Genomics Visium platform.
HDCytoData contains a set of high-dimensional cytometry benchmark datasets. These datasets are formatted into SummarizedExperiment and flowSet Bioconductor object formats, including all required metadata. Row metadata includes sample IDs, group IDs, patient IDs, reference cell population or cluster labels and labels identifying spiked in cells. Column metadata includes channel names, protein marker names, and protein marker classes.
This package provides methods and models for handling zero-inflated single cell assay data.
This package identifies mutational signatures of single nucleotide variants (SNVs). It provides a infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms.
This package extends the ggplot2 plotting system which implements a grammar of graphics. ggtree is designed for visualization and annotation of phylogenetic trees and other tree-like structures with their annotation data.
This package provides functions to ease the transition between Rmarkdown and LaTeX documents when authoring a Bioconductor Workflow.
This package provides visualization tools for flow cytometry data.
This package implements algorithms for calculating microarray enrichment (ACME), and it is a set of tools for analysing tiling array of combined chromatin immunoprecipitation with DNA microarray (ChIP/chip), DNAse hypersensitivity, or other experiments that result in regions of the genome showing enrichment. It does not rely on a specific array technology (although the array should be a tiling array), is very general (can be applied in experiments resulting in regions of enrichment), and is very insensitive to array noise or normalization methods. It is also very fast and can be applied on whole-genome tiling array experiments quite easily with enough memory.
This package provides a package to analyze oligonucleotide arrays (expression/SNP/tiling/exon) at probe-level. It currently supports Affymetrix (CEL files) and NimbleGen arrays (XYS files).
This package provides a enhanced visualization of single-cell data based on gene-weighted density estimation. Nebulosa recovers the signal from dropped-out features and allows the inspection of the joint expression from multiple features (e.g. genes). Seurat and SingleCellExperiment objects can be used within Nebulosa.
The Spectra package defines an efficient infrastructure for storing and handling mass spectrometry spectra and functionality to subset, process, visualize and compare spectra data. It provides different implementations (backends) to store mass spectrometry data. These comprise backends tuned for fast data access and processing and backends for very large data sets ensuring a small memory footprint.
This package vendors an assortment of useful header-only C++ libraries. Bioconductor packages can use these libraries in their own C++ code by LinkingTo this package without introducing any additional dependencies. The use of a central repository avoids duplicate vendoring of libraries across multiple R packages, and enables better coordination of version updates across cohorts of interdependent C++ libraries.
This package implements low-level utilities for single-cell trajectory analysis, primarily intended for re-use inside higher-level packages. It includes a function to create a cluster-level minimum spanning tree and data structures to hold pseudotime inference results.
Piano performs gene set analysis using various statistical methods, from different gene level statistics and a wide range of gene-set collections. The package contains functions for combining the results of multiple runs of gene set analyses.
Fit linear models to overdispersed count data. The package can estimate the overdispersion and fit repeated models for matrix input. It is designed to handle large input datasets as they typically occur in single cell RNA-seq experiments.
This package r-chromvar determines variation in chromatin accessibility across sets of annotations or peaks. r-chromvar is designed primarily for single-cell or sparse chromatin accessibility data like single cell assay for transposase-accessible chromatin using sequencing (scATAC-seq or sparse bulk ATAC or deoxyribonuclease sequence (DNAse-seq) experiments.
The epigenomics road map describes locations of epigenetic marks in DNA from a variety of cell types. Of interest are locations of histone modifications, sites of DNA methylation, and regions of accessible chromatin. This package presents a selection of elements of the road map including metadata and outputs of the ChromImpute procedure applied to ENCODE cell lines by Ernst and Kellis.
With the dedicated fortify method implemented for flowSet, ncdfFlowSet and GatingSet classes, both raw and gated flow cytometry data can be plotted directly with ggplot. The ggcyto wrapper and some custom layers also make it easy to add gates and population statistics to the plot.
This package identifies differential expression in high-throughput count data, such as that derived from next-generation sequencing machines, calculating estimated posterior likelihoods of differential expression (or more complex hypotheses) via empirical Bayesian methods.