Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to perform multiple comparison analyses, based on the well-known Tukey's "Honestly Significant Difference" (HSD) test. In models involving interactions, TukeyC stands out from other R packages by implementing intuitive and easy-to-use functions. In addition to accommodating traditional R methods such as lm() and aov(), it has also been extended to objects of the lmer() class, that is, mixed models with fixed effects. For more details see Tukey (1949) <doi:10.2307/3001913>.
This package implements a probabilistic ensemble time-series forecaster that combines an auto-encoder with a neural decision forest whose split variables are learned through a differentiable feature-mask layer. Functions are written with torch tensors and provide CRPS (Continuous Ranked Probability Scores) training plus mixture-distribution post-processing.
This package provides a collection of functions and routines for inputting thermal image video files, plotting and converting binary raw data into estimates of temperature. First published 2015-03-26. Written primarily for research purposes in biological applications of thermal images. v1 included the base calculations for converting thermal image binary values to temperatures. v2 included additional equations for providing heat transfer calculations and an import function for thermal image files (v2.2.3 fixed error importing thermal image to windows OS). v3. Added numerous functions for converting thermal image, videos, rewriting and exporting. v3.1. Added new functions to convert files. v3.2. Fixed the various functions related to finding frame times. v4.0. fixed an error in atmospheric attenuation constants, affecting raw2temp and temp2raw functions. Recommend update for use with long distance calculations. v.4.1.3 changed to frameLocates to reflect change to as.character() to format().
Computation and visualization of Taxicab Correspondence Analysis, Choulakian (2006) <doi:10.1007/s11336-004-1231-4>. Classical correspondence analysis (CA) is a statistical method to analyse 2-dimensional tables of positive numbers and is typically applied to contingency tables (Benzecri, J.-P. (1973). L'Analyse des Donnees. Volume II. L'Analyse des Correspondances. Paris, France: Dunod). Classical CA is based on the Euclidean distance. Taxicab CA is like classical CA but is based on the Taxicab or Manhattan distance. For some tables, Taxicab CA gives more informative results than classical CA.
This package provides a set of tools designed to perform descriptive data analysis on assets, manage asset portfolios and capital allocation, and download, organize, and maintain data from the "Tehran Stock Exchange" and "NOBITEX" platforms.
Accompanies the book Rainer Schlittgen and Cristina Sattarhoff (2020) <https://www.degruyter.com/view/title/575978> "Angewandte Zeitreihenanalyse mit R, 4. Auflage" . The package contains the time series and functions used therein. It was developed over many years teaching courses about time series analysis.
Write modelling results into a database for tigreBrowser', a web-based tool for browsing figures and summary data of independent model fits, such as Gaussian process models fitted for each gene or other genomic element. The browser is available at <https://github.com/PROBIC/tigreBrowser>.
Simulation methods for phylogenetic trees where (i) all tips are sampled at one time point or (ii) tips are sampled sequentially through time. (i) For sampling at one time point, simulations are performed under a constant rate birth-death process, conditioned on having a fixed number of final tips (sim.bd.taxa()), or a fixed age (sim.bd.age()), or a fixed age and number of tips (sim.bd.taxa.age()). When conditioning on the number of final tips, the method allows for shifts in rates and mass extinction events during the birth-death process (sim.rateshift.taxa()). The function sim.bd.age() (and sim.rateshift.taxa() without extinction) allow the speciation rate to change in a density-dependent way. The LTT plots of the simulations can be displayed using LTT.plot(), LTT.plot.gen() and LTT.average.root(). TreeSim further samples trees with n final tips from a set of trees generated by the common sampling algorithm stopping when a fixed number m>>n of tips is first reached (sim.gsa.taxa()). This latter method is appropriate for m-tip trees generated under a big class of models (details in the sim.gsa.taxa() man page). For incomplete phylogeny, the missing speciation events can be added through simulations (corsim()). (ii) sim.rateshifts.taxa() is generalized to sim.bdsky.stt() for serially sampled trees, where the trees are conditioned on either the number of sampled tips or the age. Furthermore, for a multitype-branching process with sequential sampling, trees on a fixed number of tips can be simulated using sim.bdtypes.stt.taxa(). This function further allows to simulate under epidemiological models with an exposed class. The function sim.genespeciestree() simulates coalescent gene trees within birth-death species trees, and sim.genetree() simulates coalescent gene trees.
Bindings for the Tabula <https://tabula.technology/> Java library, which can extract tables from PDF files. This tool can reduce time and effort in data extraction processes in fields like investigative journalism. It allows for automatic and manual table extraction, the latter facilitated through a Shiny interface, enabling manual areas selection\ with a computer mouse for data retrieval.
This package provides bindings to an R grammar for Tree-sitter', to be used alongside the treesitter package. Tree-sitter builds concrete syntax trees for source files of any language, and can efficiently update those syntax trees as the source file is edited.
Temperature measurement data, equations and methods for thermocouples, wire RTD, thermistors, IC thermometers, bimetallic strips and the ITS-90.
This package provides a unified tidyverse-compatible interface to R's machine learning packages. Wraps established implementations from glmnet', randomForest', xgboost', e1071', rpart', gbm', nnet', cluster', dbscan', and others - providing consistent function signatures, tidy tibble output, and unified ggplot2'-based visualization. The underlying algorithms are unchanged; tidylearn simply makes them easier to use together. Access raw model objects via the $fit slot for package-specific functionality. Methods include random forests Breiman (2001) <doi:10.1023/A:1010933404324>, LASSO regression Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, elastic net Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, support vector machines Cortes and Vapnik (1995) <doi:10.1007/BF00994018>, and gradient boosting Friedman (2001) <doi:10.1214/aos/1013203451>.
This package provides new layer functions to tmap for drawing glyphs. A glyph is a small chart (e.g., donut chart) shown at specific map locations to visualize multivariate or time-series data. The functions work with the syntax of tmap and allow flexible control over size, layout, and appearance.
Fits time-dependent shared frailty Cox model (specifically the adapted Paik et al.'s Model) based on the paper "Centre-Effect on Survival After Bone Marrow Transplantation: Application of Time-Dependent Frailty Models", by C.M. Wintrebert, H. Putter, A.H. Zwinderman and J.C. van Houwelingen (2004) <doi:10.1002/bimj.200310051>.
Key-value store, implemented as a wrapper around LMDB'; the "lightning memory-mapped database" <https://www.symas.com/mdb>. LMDB is a transactional key value store that uses a memory map for efficient access. This package wraps the entire LMDB interface (except duplicated keys), and provides objects for transactions and cursors.
The main purpose of this package is to propose a rigorous framework to fairly compare trip distribution laws and models as described in Lenormand et al. (2016) <doi:10.1016/j.jtrangeo.2015.12.008>.
Convert semi-structured log files (such as Apache access.log files) into a tabular format (data.frame) using a standard template system.
The tdROC package facilitates the estimation of time-dependent ROC (Receiver Operating Characteristic) curves and the Area Under the time-dependent ROC Curve (AUC) in the context of survival data, accommodating scenarios with right censored data and the option to account for competing risks. In addition to the ROC/AUC estimation, the package also estimates time-dependent Brier score and survival difference. Confidence intervals of various estimated quantities can be obtained from bootstrap. The package also offers plotting functions for visualizing time-dependent ROC curves.
This package provides a framework for the creation and use of Neural ordinary differential equations with the tensorflow and keras packages. The idea of Neural ordinary differential equations comes from Chen et al. (2018) <doi:10.48550/arXiv.1806.07366>, and presents a novel way of learning and solving differential systems.
Total variation denoising can be used to approximate a given sequence of noisy observations by a piecewise constant sequence, with adaptively-chosen break points. An efficient linear-time algorithm for total variation denoising is provided here, based on Johnson (2013) <doi:10.1080/10618600.2012.681238>.
It performs the smoothing approach provided by penalized least squares for univariate and bivariate time series, as proposed by Guerrero (2007) and Gerrero et al. (2017). This allows to estimate the time series trend by controlling the amount of resulting (joint) smoothness. --- Guerrero, V.M (2007) <DOI:10.1016/j.spl.2007.03.006>. Guerrero, V.M; Islas-Camargo, A. and Ramirez-Ramirez, L.L. (2017) <DOI:10.1080/03610926.2015.1133826>.
Visualizing cuts for either axis-align or non axis-align tree methods (e.g. decision tree, random tessellation process).
This package provides a suite of functions for analysing, interpreting, and visualising time-series features calculated from different feature sets from the theft package. Implements statistical learning methodologies described in Henderson, T., Bryant, A., and Fulcher, B. (2023) <doi:10.48550/arXiv.2303.17809>.
Estimates the weights and measure of robustness to treatment effect heterogeneity attached to two-way fixed effects regressions. Clément de Chaisemartin, Xavier D'HaultfŠuille (2020) <DOI: 10.1257/aer.20181169>.