Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods to help selecting General Circulation Models (GCMs) in the context of projecting models to future scenarios. It is provided clusterization algorithms, distance and correlation metrics, as well as a tailor-made algorithm to detect the optimum subset of GCMs that recreate the environment of all GCMs as proposed in Esser et al. (2025) <doi:10.1111/gcb.70008>.
Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. See <https://osf.io/preprints/psyarxiv/4q9ex_v2> for a detailed tutorial. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . <https://cdriver.netlify.app/> contains some tutorial blog posts.
Visualizes results of item analysis such as item difficulty, item discrimination, and coefficient alpha for ease of result communication.
Spatio-temporal data from Scotland used in the vignettes accompanying the CARBayes (spatial modelling) and CARBayesST (spatio-temporal modelling) packages. Most of the data relate to the set of 271 Intermediate Zones (IZ) that make up the 2001 definition of the Greater Glasgow and Clyde health board.
The cmgnd implements the constrained mixture of generalized normal distributions model, a flexible statistical framework for modelling univariate data exhibiting non-normal features such as skewness, multi-modality, and heavy tails. By imposing constraints on model parameters, the cmgnd reduces estimation complexity while maintaining high descriptive power, offering an efficient solution in the presence of distributional irregularities. For more details see Duttilo and Gattone (2025) <doi:10.1007/s00180-025-01638-x> and Duttilo et al (2025) <doi:10.48550/arXiv.2506.03285>.
Flexible univariate count models based on renewal processes. The models may include covariates and can be specified with familiar formula syntax as in glm() and package flexsurv'. The methodology is described by Kharrat et all (2019) <doi:10.18637/jss.v090.i13> (included as vignette Countr_guide in the package).
Simulates time-to-event data with type I right censoring using two methods: the inverse CDF method and our proposed memoryless method. The latter method takes advantage of the memoryless property of survival and simulates a separate distribution between change-points. We include two parametric distributions: exponential and Weibull. Inverse CDF method draws on the work of Rainer Walke (2010), <https://www.demogr.mpg.de/papers/technicalreports/tr-2010-003.pdf>.
Use the US Census API to collect summary data tables for SF1 and ACS datasets at arbitrary geographies.
Calculate date of birth, age, and gender, and generate anonymous sequence numbers from CPR numbers. <https://en.wikipedia.org/wiki/Personal_identification_number_(Denmark)>.
This package provides a function for fitting Poisson and negative binomial regression models when the number of parameters exceeds the sample size, using the the generalized monotone incremental forward stagewise method.
This package provides an object class for dealing with many multivariate probability distributions at once, useful for simulation.
Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
This package provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
Resampling is a standard step in particle filtering and in sequential Monte Carlo. This package implements the chopthin resampler, which keeps a bound on the ratio between the largest and the smallest weights after resampling.
This package performs classical age-depth modelling of dated sediment deposits - prior to applying more sophisticated techniques such as Bayesian age-depth modelling. Any radiocarbon dated depths are calibrated. Age-depth models are constructed by sampling repeatedly from the dated levels, each time drawing age-depth curves. Model types include linear interpolation, linear or polynomial regression, and a range of splines. See Blaauw (2010) <doi:10.1016/j.quageo.2010.01.002>.
This package provides a simple, fast algorithm to find the neighbors and similarities of users in user-based filtering systems, to break free from the complex computation of existing similarity formulas and the ability to solve big data.
Iterate and repel visually similar colors away in various ggplot2 plots. When many groups are plotted at the same time on multiple axes, for instance stacked bars or scatter plots, effectively ordering colors becomes difficult. This tool iterates through color combinations to find the best solution to maximize visual distinctness of nearby groups, so plots are more friendly toward colorblind users. This is achieved by two distance measurements, distance between groups within the plot, and CIELAB color space distances between colors as described in Carter et al., (2018) <doi:10.25039/TR.015.2018>.
Fits a pseudo Cox proprotional hazards model when survival times are missing for control groups.
This package implements Dirichlet multinomial modeling of relative abundance data using functionality provided by the Stan software. The purpose of this package is to provide a user friendly way to interface with Stan that is suitable for those new to modeling. For more regarding the modeling mathematics and computational techniques we use see our publication in Molecular Ecology Resources titled Dirichlet multinomial modeling outperforms alternatives for analysis of ecological count data (Harrison et al. 2020 <doi:10.1111/1755-0998.13128>).
Useful tools for fitting, validating, and forecasting of practical convolution-closed time series models for low counts are provided. Marginal distributions of the data can be modelled via Poisson and Generalized Poisson innovations. Regression effects can be incorporated through time varying innovation rates. The models are described in Jung and Tremayne (2011) <doi:10.1111/j.1467-9892.2010.00697.x> and the model assessment tools are presented in Czado et al. (2009) <doi:10.1111/j.1541-0420.2009.01191.x> and, Tsay (1992) <doi:10.2307/2347612>.
Computes classification accuracy and consistency indices under Item Response Theory. Implements the total score IRT-based methods in Lee, Hanson & Brennen (2002) and Lee (2010), the IRT-based methods in Rudner (2001, 2005), and the total score nonparametric methods in Lathrop & Cheng (2014). For dichotomous and polytomous tests.
Doubly robust estimation and inference of log hazard ratio under the Cox marginal structural model with informative censoring. An augmented inverse probability weighted estimator that involves 3 working models, one for conditional failure time T, one for conditional censoring time C and one for propensity score. Both models for T and C can depend on both a binary treatment A and additional baseline covariates Z, while the propensity score model only depends on Z. With the help of cross-fitting techniques, achieves the rate-doubly robust property that allows the use of most machine learning or non-parametric methods for all 3 working models, which are not permitted in classic inverse probability weighting or doubly robust estimators. When the proportional hazard assumption is violated, CoxAIPW estimates a causal estimated that is a weighted average of the time-varying log hazard ratio. Reference: Luo, J. (2023). Statistical Robustness - Distributed Linear Regression, Informative Censoring, Causal Inference, and Non-Proportional Hazards [Unpublished doctoral dissertation]. University of California San Diego.; Luo & Xu (2022) <doi:10.48550/arXiv.2206.02296>; Rava (2021) <https://escholarship.org/uc/item/8h1846gs>.
The CloudOS client library for R makes it easy to interact with CloudOS in the R environment for analysis.
C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0).