Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Abstract of Manuscript. Differential gene expression analysis using RNA sequencing (RNA-seq) data is a standard approach for making biological discoveries. Ongoing large-scale efforts to process and normalize publicly available gene expression data enable rapid and systematic reanalysis. While several powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources systematically recompute differentially expressed genes (DEGs) generated from individual studies. We developed a robust differential expression analysis pipeline to recompute 3162 human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and 142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to interact with the recomputed DEG lists. DEET, available through CRAN and RShiny, systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF targets to their own gene lists. DEET identifies relevant studies based on shared results with the userĂ¢ s gene lists, aiding in hypothesis generation and data-driven literature review. Sokolowski, Dustin J., et al. "Differential Expression Enrichment Tool (DEET): an interactive atlas of human differential gene expression." Nucleic Acids Research Genomics and Bioinformatics (2023).
Supports import/export for a number of datetime string standards and R datetime classes often including lossless re-export of any original reduced precision including ISO 8601 <https://en.wikipedia.org/wiki/ISO_8601> and pdfmark <https://opensource.adobe.com/dc-acrobat-sdk-docs/library/pdfmark/> datetime strings. Supports local/global datetimes with optional UTC offsets and/or (possibly heterogeneous) time zones with up to nanosecond precision.
This package provides a weekly, monthly, yearly summary of dengue cases by state/ province/ country.
S4-distribution classes based on package distr for distributions from packages fBasics and fGarch'.
Fits Gaussian Mixtures by applying evolution. As fitness function a mixture of the chi square test for distributions and a novel measure for approximating the common area under curves between multiple Gaussians is used. The package presents an alternative to the commonly used Likelihood Maximization as is used in Expectation Maximization. The algorithm and applications of this package are published under: Lerch, F., Ultsch, A., Lotsch, J. (2020) <doi:10.1038/s41598-020-57432-w>. The evolution is based on the GA package: Scrucca, L. (2013) <doi:10.18637/jss.v053.i04> while the Gaussian Mixture Logic stems from AdaptGauss': Ultsch, A, et al. (2015) <doi:10.3390/ijms161025897>.
Dynamic slicing is a method designed for dependency detection between a categorical variable and a continuous variable. It could be applied for non-parametric hypothesis testing and gene set enrichment analysis.
This package contains the discrete nonparametric survivor function estimation algorithm of De Gruttola and Lagakos for doubly interval-censored failure time data and the discrete nonparametric survivor function estimation algorithm of Sun for doubly interval-censored left-truncated failure time data [Victor De Gruttola & Stephen W. Lagakos (1989) <doi:10.2307/2532030>] [Jianguo Sun (1995) <doi:10.2307/2533008>].
Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.
S4 classes around infrastructure provided by the coda and dclone packages to make package development easy as a breeze with data cloning for hierarchical models.
This package provides novel dendroclimatological methods, primarily used by the Tree-ring research community. There are four core functions. The first one is daily_response(), which finds the optimal sequence of days that are related to one or more tree-ring proxy records. Similar function is daily_response_seascorr(), which implements partial correlations in the analysis of daily response functions. For the enthusiast of monthly data, there is monthly_response() function. The last core function is compare_methods(), which effectively compares several linear and nonlinear regression algorithms on the task of climate reconstruction.
This package contains functions that check for formatting of the Subject Phenotype data set and data dictionary as specified by the National Center for Biotechnology Information (NCBI) Database of Genotypes and Phenotypes (dbGaP) <https://www.ncbi.nlm.nih.gov/gap/docs/submissionguide/>.
This package provides information on drug names (brand, generic and street) for drugs tracked by the DEA. There are functions that will search synonyms and return the drug names and types. The vignettes have extensive information on the work done to create the data for the package.
This package provides a statistically and computationally efficient debiasing method for conducting valid inference on the high-dimensional linear regression function with missing outcomes. The reference paper is Zhang, Giessing, and Chen (2023) <arXiv:2309.06429>.
Computations for approximations and alternatives for the DPQ (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: '"dpq"'-functions.
Open, read data from and modify Data Packages. Data Packages are an open standard for bundling and describing data sets (<https://datapackage.org>). When data is read from a Data Package care is taken to convert the data as much a possible to R appropriate data types. The package can be extended with plugins for additional data types.
Detects and filters damaged cells in single-cell RNA sequencing (scRNA-seq) data using a novel approach inspired by DoubletFinder'. Damage is detected by measuring the extent to which cells deviate from artificially damaged profiles of themselves, simulated through the probabilistic escape of cytoplasmic RNA. As output, a damage score ranging from 0 to 1 is given for each cell providing an intuitive scale for filtering that is standardised across cell types, samples, and experiments.
Smooth testing of goodness of fit. These tests are data driven (alternative hypothesis is dynamically selected based on data). In this package you will find various tests for exponent, Gaussian, Gumbel and uniform distribution.
This package implements the daily based Morgan-Morgan-Finney (DMMF) soil erosion model (Choi et al., 2017 <doi:10.3390/w9040278>) for estimating surface runoff and sediment budgets from a field or a catchment on a daily basis.
Datasets and functions that can be used for data analysis practice, homework and projects in data science courses and workshops. 26 datasets are available for case studies in data visualization, statistical inference, modeling, linear regression, data wrangling and machine learning.
R package to build and simulate deterministic compartmental models that can be non-Markovian. Length of stay in each compartment can be defined to follow a parametric distribution (d_exponential(), d_gamma(), d_weibull(), d_lognormal()) or a non-parametric distribution (nonparametric()). Other supported types of transition from one compartment to another includes fixed transition (constant()), multinomial (multinomial()), fixed transition probability (transprob()).
Tool for the development of multi-linear QSPR/QSAR models (Quantitative structure-property/activity relationship). Theses models are used in chemistry, biology and pharmacy to find a relationship between the structure of a molecule and its property (such as activity, toxicology but also physical properties). The various functions of this package allows: selection of descriptors based of variances, intercorrelation and user expertise; selection of the best multi-linear regression in terms of correlation and robustness; methods of internal validation (Leave-One-Out, Leave-Many-Out, Y-scrambling) and external using test sets.
Manipulates date ('Date'), date time ('POSIXct') and time ('hms') vectors. Date/times are considered discrete and are floored whenever encountered. Times are wrapped and time zones are maintained unless explicitly altered by the user.
This package provides a set of algorithms based on Quinn et al. (1991) <doi:10.1002/hyp.3360050106> for processing river network and digital elevation data to build implementations of Dynamic TOPMODEL, a semi-distributed hydrological model proposed in Beven and Freer (2001) <doi:10.1002/hyp.252>. The dynatop package implements simulation code for Dynamic TOPMODEL based on the output of dynatopGIS'.
Use dynamic programming method to solve l1 convex clustering with identical weights.