Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to run and assist four different similarity measures. The similarity measures included are: longest common subsequence (LCSS), Frechet distance, edit distance and dynamic time warping (DTW). Each of these similarity measures can be calculated from two n-dimensional trajectories, both in matrix form.
This package provides functions for coarse-to-fine spatial modeling (CFSM), enabling fast spatial prediction, regression, and uncertainty quantification. For further details, see Murakami et al. (2025) <doi:10.48550/arXiv.2510.00968>.
This package implements the S-type estimators, novel robust estimators for general linear regression models, addressing challenges such as outlier contamination and leverage points. This package introduces robust regression techniques to provide a robust alternative to classical methods and includes diagnostic tools for assessing model fit and performance. The methodology is based on the study, "Comparison of the Robust Methods in the General Linear Regression Model" by Sazak and Mutlu (2023). This package is designed for statisticians and applied researchers seeking advanced tools for robust regression analysis.
Simulation extrapolation and inverse probability weighted generalized estimating equations method for longitudinal data with missing observations and measurement error in covariates. References: Yi, G. Y. (2008) <doi:10.1093/biostatistics/kxm054>; Cook, J. R. and Stefanski, L. A. (1994) <doi:10.1080/01621459.1994.10476871>; Little, R. J. A. and Rubin, D. B. (2002, ISBN:978-0-471-18386-0).
Simulates correlated multinomial responses conditional on a marginal model specification.
Seed vigor is defined as the sum total of those properties of the seed which determine the level of activity and performance of the seed or seed lot during germination and seedling emergence. Testing for vigor becomes more important for carryover seeds, especially if seeds were stored under unknown conditions or under unfavorable storage conditions. Seed vigor testing is also used as indicator of the storage potential of a seed lot and in ranking various seed lots with different qualities. The vigour index is calculated using the equation given by (Ling et al. 2014) <doi:10.1038/srep05859>.
This package provides a flexible tool for simulating complex longitudinal data using structural equations, with emphasis on problems in causal inference. Specify interventions and simulate from intervened data generating distributions. Define and evaluate treatment-specific means, the average treatment effects and coefficients from working marginal structural models. User interface designed to facilitate the conduct of transparent and reproducible simulation studies, and allows concise expression of complex functional dependencies for a large number of time-varying nodes. See the package vignette for more information, documentation and examples.
This package contains all the formulae of the growth and trace element uptake model described in the equally-named Geoscientific Model Development paper (de Winter, 2017, <doi:10.5194/gmd-2017-137>). The model takes as input a file with X- and Y-coordinates of digitized growth increments recognized on a longitudinal cross section through the bivalve shell, as well as a BMP file of an elemental map of the cross section surface with chemically distinct phases separated by phase analysis. It proceeds by a step-by-step process described in the paper, by which digitized growth increments are used to calculate changes in shell height, shell thickness, shell volume, shell mass and shell growth rate through the bivalve's life time. Then, results of this growth modelling are combined with the trace element mapping results to trace the incorporation of trace elements into the bivalve shell. Results of various modelling parameters can be exported in the form of XLSX files.
Density, distribution function, quantile function and random generation for the skewed t distribution of Fernandez and Steel.
This package provides wrappers for common activity patterns in simmer trajectories.
Corrects the spelling of a given word in English using a modification of Peter Norvig's spell correct algorithm (see <http://norvig.com/spell-correct.html>) which handles up to three edits. The algorithm tries to find the spelling with maximum probability of intended correction out of all possible candidate corrections from the original word.
Provide data generation and estimation tools for the multivariate scale mixtures of normal presented in Lange and Sinsheimer (1993) <doi:10.2307/1390698>, the multivariate scale mixtures of skew-normal presented in Zeller, Lachos and Vilca (2011) <doi:10.1080/02664760903406504>, the multivariate skew scale mixtures of normal presented in Louredo, Zeller and Ferreira (2021) <doi:10.1007/s13571-021-00257-y> and the multivariate scale mixtures of skew-normal-Cauchy presented in Kahrari et al. (2020) <doi:10.1080/03610918.2020.1804582>.
This package provides a comprehensive suite of functions designed for constructing and managing ShinyItemAnalysis modules, supplemented with detailed guides, ready-to-use templates, linters, and tests. This package allows developers to seamlessly create and integrate one or more modules into their existing packages or to start a new module project from scratch.
Algorithms for fitting scaled sparse linear regression and estimating precision matrices.
Transformation of sea currents to connectivity data. Two files of horizontal and vertical currents flows are transformed into connectivity data in the form of sfnetwork', shapefile, edge list and adjacency matrix. An application example is shown at Nagkoulis et al. (2025) <doi:10.1016/j.dib.2024.111268>.
This package provides functionality to generate, (interactively) modify (by adding, removing and renaming nodes) and convert nested hierarchies between different formats. These tree like structures can be used to define for example complex hierarchical tables used for statistical disclosure control.
Streamlined workflow from deconvolution of bulk RNA-seq data to downstream differential expression and gene-set enrichment analysis. Provide various visualization functions.
This package provides functions to simulate from joint survival and marker models. The user can specific all basis functions of time, random or deterministic covariates, random or deterministic left-truncation and right-censoring times, and model parameters.
Fit a spatial-temporal occupancy models using a probit formulation instead of a traditional logit model.
The function syncSubsample subsamples temporal data of different entities so that the result only contains synchronal events. The function mci calculates the Movement Coordination Index (MCI, see reference on help page for function mci') of a data set created with the function syncSubsample'.
Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.
Studies otolith shape variation among fish populations. Otoliths are calcified structures found in the inner ear of teleost fish and their shape has been known to vary among several fish populations and stocks, making them very useful in taxonomy, species identification and to study geographic variations. The package extends previously described software used for otolith shape analysis by allowing the user to automatically extract closed contour outlines from a large number of images, perform smoothing to eliminate pixel noise described in Haines and Crampton (2000) <doi:10.1111/1475-4983.00148>, choose from conducting either a Fourier or wavelet see Gençay et al (2001) <doi:10.1016/S0378-4371(00)00463-5> transform to the outlines and visualize the mean shape. The output of the package are independent Fourier or wavelet coefficients which can be directly imported into a wide range of statistical packages in R. The package might prove useful in studies of any two dimensional objects.
Augmenting a matched data set by generating multiple stochastic, matched samples from the data using a multi-dimensional histogram constructed from dropping the input matched data into a multi-dimensional grid built on the full data set. The resulting stochastic, matched sets will likely provide a collectively higher coverage of the full data set compared to the single matched set. Each stochastic match is without duplication, thus allowing downstream validation techniques such as cross-validation to be applied to each set without concern for overfitting.
Fits bi-variate ellipses to stable isotope data using Bayesian inference with the aim being to describe and compare their isotopic niche.