Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Four ensemble-based methods (SMOTEBoost, RUSBoost, UnderBagging, and SMOTEBagging) for class imbalance problem are implemented for binary classification. Such methods adopt ensemble methods and data re-sampling techniques to improve model performance in presence of class imbalance problem. One special feature offers the possibility to choose multiple supervised learning algorithms to build weak learners within ensemble models. References: Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer (2003) <doi:10.1007/978-3-540-39804-2_12>, Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano (2010) <doi:10.1109/TSMCA.2009.2029559>, R. Barandela, J. S. Sanchez, R. M. Valdovinos (2003) <doi:10.1007/s10044-003-0192-z>, Shuo Wang and Xin Yao (2009) <doi:10.1109/CIDM.2009.4938667>, Yoav Freund and Robert E. Schapire (1997) <doi:10.1006/jcss.1997.1504>.
This package provides a function to query and extract data from the US Energy Information Administration ('EIA') API V2 <https://www.eia.gov/opendata/>. The EIA API provides a variety of information, in a time series format, about the energy sector in the US. The API is open, free, and requires an access key and registration at <https://www.eia.gov/opendata/>.
Support functions for R-based "EQUALencrypt - Encrypt and decrypt whole files" and "EQUALencrypt - Encrypt and decrypt columns of data" shiny applications which allow researchers without coding skills or expertise in encryption algorithms to share data after encryption. Gurusamy,K (2025)<doi:10.5281/zenodo.16743676> and Gurusamy,K (2025)<doi:10.5281/zenodo.16744058>.
Elastic net regression models are controlled by two parameters, lambda, a measure of shrinkage, and alpha, a metric defining the model's location on the spectrum between ridge and lasso regression. glmnet provides tools for selecting lambda via cross validation but no automated methods for selection of alpha. Elastic Net SearcheR automates the simultaneous selection of both lambda and alpha. Developed, in part, with support by NICHD R03 HD094912.
Analysing data from evaluations of educational interventions using a randomised controlled trial design. Various analytical tools to perform sensitivity analysis using different methods are supported (e.g. frequentist models with bootstrapping and permutations options, Bayesian models). The included commands can be used for simple randomised trials, cluster randomised trials and multisite trials. The methods can also be used more widely beyond education trials. This package can be used to evaluate other intervention designs using Frequentist and Bayesian multilevel models.
Given the scores from decision makers, the analytic hierarchy process can be conducted easily.
This package provides API access to data from the U.S. Energy Information Administration ('EIA') <https://www.eia.gov/>. Use of the EIA's API and this package requires a free API key obtainable at <https://www.eia.gov/opendata/register.php>. This package includes functions for searching the EIA data directory and returning time series and geoset time series datasets. Datasets returned by these functions are provided by default in a tidy format, or alternatively, in more raw formats. It also offers helper functions for working with EIA date strings and time formats and for inspecting different summaries of series metadata. The package also provides control over API key storage and caching of API request results.
This package provides a framework that provides the methods for quantifying entropy-based local indicator of spatial association (ELSA) that can be used for both continuous and categorical data. In addition, this package offers other methods to measure local indicators of spatial associations (LISA). Furthermore, global spatial structure can be measured using a variogram-like diagram, called entrogram. For more information, please check that paper: Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., Toxopeus, A. G., & Alibakhshi, S. (2019) <doi:10.1016/j.spasta.2018.10.001>.
This package provides a non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.
Enables simulation of water piping networks using EPANET'. The package provides functions from the EPANET programmer's toolkit as R functions so that basic or customized simulations can be carried out from R. The package uses EPANET version 2.2 from Open Water Analytics <https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.2>.
This package provides summary statistics of local geospatial features within a given geographic area. It does so by calculating the area covered by a target geospatial feature (i.e. buildings, parks, lakes, etc.). The geospatial features can be of any type of geospatial data, including point, polygon or line data.
Connect to Elasticsearch', a NoSQL database built on the Java Virtual Machine. Interacts with the Elasticsearch HTTP API (<https://www.elastic.co/elasticsearch/>), including functions for setting connection details to Elasticsearch instances, loading bulk data, searching for documents with both HTTP query variables and JSON based body requests. In addition, elastic provides functions for interacting with API's for indices', documents, nodes, clusters, an interface to the cat API, and more.
Model-based clustering for paired data based on the regression of a mixture of Bayesian hierarchical models on covariates. Zhang et al. (2023) <doi:10.1186/s12859-023-05556-x>.
The univariate statistical quality control tool aims to address measurement error effects when constructing exponentially weighted moving average p control charts. The method primarily focuses on binary random variables, but it can be applied to any continuous random variables by using sign statistic to transform them to discrete ones. With the correction of measurement error effects, we can obtain the corrected control limits of exponentially weighted moving average p control chart and reasonably adjusted exponentially weighted moving average p control charts. The methods in this package can be found in some relevant references, such as Chen and Yang (2022) <arXiv: 2203.03384>; Yang et al. (2011) <doi: 10.1016/j.eswa.2010.11.044>; Yang and Arnold (2014) <doi: 10.1155/2014/238719>; Yang (2016) <doi: 10.1080/03610918.2013.763980> and Yang and Arnold (2016) <doi: 10.1080/00949655.2015.1125901>.
Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <doi:10.48550/arXiv.1611.09477> or nonlinear models <doi:10.48550/arXiv.1604.06737> can be used. There are also functions for dimension reduction and other approaches.
This package provides tools to compute the neural fragility matrix from intracranial electrocorticographic (iEEG) recordings, enabling the analysis of brain dynamics during seizures. The package implements the method described by Li et al. (2017) <doi:10.23919/ACC.2017.7963378> and includes functions for data preprocessing ('Epoch'), fragility computation ('calcAdjFrag'), and visualization.
This package provides a collection of small functions useful for epidemics analysis and infectious disease modelling. This includes computation of basic reproduction numbers from growth rates, generation of hashed labels to anonymize data, and fitting discretized Gamma distributions.
Analyses districted electoral systems of any magnitude by computing district-party conversion ratios and seats-to-votes deviations, decomposing the sources of deviation. Traditional indexes are also computed. References: Kedar, O., Harsgor, L. and Sheinerman, R.A. (2016). <doi:10.1111/ajps.12225>. Penades, A and Pavia, J.M. (2025) The decomposition of seats-to-votes distortion in elections: mean, variance, malapportionment and participation''. Acknowledgements: The authors wish to thank Consellerà a de Educación, Cultura, Universidades y Empleo, Generalitat Valenciana (grant CIACO/2023/031) for supporting this research.
This package provides a tool for conducting exact parametric regression-based causal mediation analysis of binary outcomes as described in Samoilenko, Blais and Lefebvre (2018) <doi:10.1353/obs.2018.0013>; Samoilenko, Lefebvre (2021) <doi:10.1093/aje/kwab055>; and Samoilenko, Lefebvre (2023) <doi:10.1002/sim.9621>.
Two classifiers for open set recognition and novelty detection based on extreme value theory. The first classifier is based on the generalized Pareto distribution (GPD) and the second classifier is based on the generalized extreme value (GEV) distribution. For details, see Vignotto, E., & Engelke, S. (2018) <arXiv:1808.09902>.
Fit, plot and compare several (extreme value) distribution functions. Compute (truncated) distribution quantile estimates and plot return periods on a linear scale. On the fitting method, see Asquith (2011): Distributional Analysis with L-moment Statistics [...] ISBN 1463508417.
Fully robust versions of the elastic net estimator are introduced for linear and binary and multinomial regression, in particular high dimensional data. The algorithm searches for outlier free subsets on which the classical elastic net estimators can be applied. A reweighting step is added to improve the statistical efficiency of the proposed estimators. Selecting appropriate tuning parameters for elastic net penalties are done via cross-validation.
Calculates marginal effects and conducts process analysis in exponential family random graph models (ERGM). Includes functions to conduct mediation and moderation analyses and to diagnose multicollinearity. URL: <https://github.com/sduxbury/ergMargins>. BugReports: <https://github.com/sduxbury/ergMargins/issues>. Duxbury, Scott W (2021) <doi:10.1177/0049124120986178>. Long, J. Scott, and Sarah Mustillo (2018) <doi:10.1177/0049124118799374>. Mize, Trenton D. (2019) <doi:10.15195/v6.a4>. Karlson, Kristian Bernt, Anders Holm, and Richard Breen (2012) <doi:10.1177/0081175012444861>. Duxbury, Scott W (2018) <doi:10.1177/0049124118782543>. Duxbury, Scott W, Jenna Wertsching (2023) <doi:10.1016/j.socnet.2023.02.003>. Huang, Peng, Carter Butts (2023) <doi:10.1016/j.socnet.2023.07.001>.
An implementation of multiple-locus association mapping on a genome-wide scale. Eagle can handle inbred and outbred study populations, populations of arbitrary unknown complexity, and data larger than the memory capacity of the computer. Since Eagle is based on linear mixed models, it is best suited to the analysis of data on continuous traits. However, it can tolerate non-normal data. Eagle reports, as its findings, the best set of snp in strongest association with a trait. For users unfamiliar with R, to perform an analysis, run OpenGUI()'. This opens a web browser to the menu-driven user interface for the input of data, and for performing genome-wide analysis.