Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
HydroBudget is a spatially distributed groundwater recharge model that computes a superficial water budget on grid cells with outputs aggregated into monthly time steps. It was developed as an accessible and computationally affordable model to simulate groundwater recharge over large areas (thousands of km2, regional-scale watersheds) and for long time periods (decades), in cold and humid climates. Model algorithms are based on the research of Dubois, E. et al. (2021a) <doi:10.5683/SP3/EUDV3H> and Dubois, E. et al. (2021b) <doi:10.5194/hess-25-6567-2021>.
Robust inference methods for fixed-effect and random-effects models of meta-analysis are implementable. The robust methods are developed using the density power divergence that is a robust estimating criterion developed in machine learning theory, and can effectively circumvent biases and misleading results caused by influential outliers. The density power divergence is originally introduced by Basu et al. (1998) <doi:10.1093/biomet/85.3.549>, and the meta-analysis methods are developed by Noma et al. (2022) <forthcoming>.
Access to Boost Date_Time functionality for dates, durations (both for days and date time objects), time zones, and posix time ('ptime') is provided by using Rcpp modules'. The posix time implementation can support high-resolution of up to nano-second precision by using 96 bits (instead of 64 with R) to present a ptime object (but this needs recompilation with a #define set).
Adds menu items for case 2 (profile case) best-worst scaling (BWS2) to the R Commander. BWS2 is a question-based survey method that constructs profiles (combinations of attribute levels) using an orthogonal array, asks respondents to select the best and worst levels in each profile, and measures preferences for attribute levels by analyzing the responses. For details, see Aizaki and Fogarty (2019) <doi:10.1016/j.jocm.2019.100171>.
The rearrangement operator (Hardy, Littlewood, and Polya 1952) for univariate, bivariate, and trivariate point estimates of monotonic functions. The package additionally provides a function that creates simultaneous confidence intervals for univariate functions and applies the rearrangement operator to these confidence intervals.
Design and analysis of confirmatory adaptive clinical trials with continuous, binary, and survival endpoints according to the methods described in the monograph by Wassmer and Brannath (2025) <doi:10.1007/978-3-031-89669-9>. This includes classical group sequential as well as multi-stage adaptive hypotheses tests that are based on the combination testing principle.
The Snell scoring procedure, implemented in R. This procedure was first described by E.J Snell (1964) <doi:10.2307/2528498> and was later used by Tong et al (1977) <doi:10.4141/cjas77-001> in dairy.
Transfer REDCap (Research Electronic Data Capture) data to a database, specifically optimized for DuckDB'. Processes data in chunks to handle large datasets without exceeding available memory. Features include data labeling, coded value conversion, and hearing a "quack" sound on success.
Quantitative Structure-Activity Relationship (QSAR) modeling is a valuable tool in computational chemistry and drug design, where it aims to predict the activity or property of chemical compounds based on their molecular structure. In this vignette, we present the rQSAR package, which provides functions for variable selection and QSAR modeling using Multiple Linear Regression (MLR), Partial Least Squares (PLS), and Random Forest algorithms.
Retrieves efficiently and reliably Investors Exchange ('IEX') stock and market data using IEX Cloud API'. The platform is offered by Investors Exchange Group (IEX Group). Main goal is to leverage R capabilities including existing packages to effectively provide financial and statistical analysis as well as visualization in support of fact-based decisions. In addition, continuously improve and enhance Riex by applying best practices and being in tune with users feedback and requirements. Please, make sure to review and acknowledge Investors Exchange Group (IEX Group) terms and conditions before using Riex (<https://iexcloud.io/terms/>).
An R Interface to Bloomberg is provided via the Blp API'.
Easily interact with the Arduino Iot Cloud API <https://www.arduino.cc/reference/en/iot/api/>, managing devices, things, properties and data.
Regression-discontinuity (RD) designs are quasi-experimental research designs popular in social, behavioral and natural sciences. The RD design is usually employed to study the (local) causal effect of a treatment, intervention or policy. This package provides tools for data-driven graphical and analytical statistical inference in RD designs: rdrobust() to construct local-polynomial point estimators and robust confidence intervals for average treatment effects at the cutoff in Sharp, Fuzzy and Kink RD settings, rdbwselect() to perform bandwidth selection for the different procedures implemented, and rdplot() to conduct exploratory data analysis (RD plots).
The Gene Ontology (GO) Consortium <https://geneontology.org/> organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as GoMiner (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. The significance is traditionally determined by randomizing the input gene list to computing the false discovery rate (FDR) of the enrichment p-value for each category. We explore here the novel alternative of randomizing the GO database rather than the gene list.
This package provides a collection of methods for estimating the basic reproduction number (R0) of infectious diseases. Features a web application to interface with the estimators. Uses the models from: Fisman et al. (2013) <DOI:10.1371/journal.pone.0083622>, Bettencourt and Ribeiro (2008) <DOI:10.1371/journal.pone.0002185>, and White and Pagano (2008) <DOI:10.1002/sim.3136>. Includes datasets for Canadian national and provincial COVID-19 case counts provided by Berry et al. (2021) <DOI:10.1038/s41597-021-00955-2>.
Quickly install Java Development Kit (JDK) without administrative privileges and set environment variables in current R session or project to solve common issues with Java environment management in R'. Recommended to users of Java'/'rJava'-dependent R packages such as r5r', opentripplanner', xlsx', openNLP', rWeka', RJDBC', tabulapdf', and many more. rJavaEnv prevents common problems like Java not found, Java version conflicts, missing Java installations, and the inability to install Java due to lack of administrative privileges. rJavaEnv automates the download, installation, and setup of the Java on a per-project basis by setting the relevant JAVA_HOME in the current R session or the current working directory (via .Rprofile', with the user's consent). Similar to what renv does for R packages, rJavaEnv allows different Java versions to be used across different projects, but can also be configured to allow multiple versions within the same project (e.g. with the help of targets package). Note: there are a few extra steps for Linux users, who don't have any Java previously installed in their system, and who prefer package installation from source, rather then installing binaries from Posit Package Manager'. See documentation for details.
Three methods to calculate R2 for models with correlated errors, including Phylogenetic GLS, Phylogenetic Logistic Regression, Linear Mixed Models (LMMs), and Generalized Linear Mixed Models (GLMMs). See details in Ives 2018 <doi:10.1093/sysbio/syy060>.
Much as roxygen2 allows one to document functions in the same file as the function itself, roxut allows one to write the unit tests in the same file as the function. Once processed, the unit tests are moved to the appropriate directory. Currently supports testthat and tinytest frameworks. The roxygen2 package provides much of the infrastructure.
The graphical approach is proposed as a general framework for clinical trial designs involving multiple hypotheses, where decisions are made only based on the observed marginal p-values. A reverse graphical approach starts from a set of singleton graphs, and gradually add vertices into graphs until rejection of a set of hypotheses is made. See Gou, J. (2020). Reverse graphical approaches for multiple test procedures. Technical Report.
Optimization of any Black-Box/Non-Convex Function on Hyper-Rectangular Parameter Space. It uses a Variation of Pattern Search Technique. Described in the paper : Das (2016) <arXiv:1604.08616> .
This package provides functions to access, search and download spacetime earth observation data via SpatioTemporal Asset Catalog (STAC). This package supports the version 1.0.0 (and older) of the STAC specification (<https://github.com/radiantearth/stac-spec>). For further details see Simoes et al. (2021) <doi:10.1109/IGARSS47720.2021.9553518>.
Calculates periodograms based on (robustly) fitting periodic functions to light curves (irregularly observed time series, possibly with measurement accuracies, occurring in astroparticle physics). Three main functions are included: RobPer() calculates the periodogram. Outlying periodogram bars (indicating a period) can be detected with betaCvMfit(). Artificial light curves can be generated using the function tsgen(). For more details see the corresponding article: Thieler, Fried and Rathjens (2016), Journal of Statistical Software 69(9), 1-36, <doi:10.18637/jss.v069.i09>.
An easy way to analyze international large-scale assessments and surveys in education or any other dataset that includes replicated weights (Balanced Repeated Replication (BRR) weights, Jackknife replicate weights,...) while also allowing for analysis with multiply imputed variables (plausible values). It supports the estimation of univariate statistics (e.g. mean, variance, standard deviation, quantiles), frequencies, correlation, linear regression and any other model already implemented in R that takes a data frame and weights as parameters. It also includes options to prepare the results for publication, following the table formatting standards of the Organization for Economic Cooperation and Development (OECD).
This package provides typed parameter documentation tags for integration with roxygen2'. Typed parameter tags provide a consistent interface for annotating expected types for parameters and returned values. Tools for converting from existing styles are also provided to easily adapt projects which implement typed documentation by convention rather than tag. Use the default format or provide your own.